Effect of crystallization on magnetic domain structure of thinned amorphous FeSiBCuNb ribbons

Crystallization and associated magnetic domain structure of Fe/sub 73.5/Cu/sub 1/Nb/sub 3/Si/sub 13.5/B/sub 9/ amorphous ribbons have been investigated in in-situ annealing studies by electron transmission microscopy (TEM). Two stages of crystallization, which occurred at 380/spl deg/C and 650/spl d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 1994-11, Vol.30 (6), p.4815-4817
Hauptverfasser: Zhou, S.X., Wang, Y.G., Ulvensoen, J.H., Hoier, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4817
container_issue 6
container_start_page 4815
container_title IEEE transactions on magnetics
container_volume 30
creator Zhou, S.X.
Wang, Y.G.
Ulvensoen, J.H.
Hoier, R.
description Crystallization and associated magnetic domain structure of Fe/sub 73.5/Cu/sub 1/Nb/sub 3/Si/sub 13.5/B/sub 9/ amorphous ribbons have been investigated in in-situ annealing studies by electron transmission microscopy (TEM). Two stages of crystallization, which occurred at 380/spl deg/C and 650/spl deg/C, have been observed. The crystals associated with these temperatures are spherical nuclei with diameters less than 5 nm or clusters of ultrafine grains whose diameters are in the range of 15-20 nm respectively. The products formed at both stages are identified as the /spl alpha/-Fe(Si) phase. The magnetic domain structure of the as-quenched specimen is composed of large and simple domains. There is no evident change in domain structure. Upon the offset of the first crystallization. However, the second stage of crystallization leads to emergence of magnetic ripple. The origin of magnetic ripple is discussed within the framework of the random anisotropy model. From the analysis, effective uniaxial anisotropy in the nanocrystalline alloy may be considered as local random anisotropy and is therefore likely to be the cause of the magnetic ripple. The estimated mean wavelength, /spl lambda/, of the magnetic ripple is approximately 160 nm.< >
doi_str_mv 10.1109/20.334231
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28253897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>334231</ieee_id><sourcerecordid>28253897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-dd641bebfe6c791f80ce0c54c7370cb002e04a0613610adcc6f5aaeacef322413</originalsourceid><addsrcrecordid>eNo90E1LxDAQBuAgCq6rB6-echI8dJ189Ouoy64Kix7Uo5Q0nbiRtlmT9LD-ertUhIFhmIdheAm5ZLBgDMpbDgshJBfsiMxYKVkCkJXHZAbAiqSUmTwlZyF8jaNMGczIx8oY1JE6Q7Xfh6ja1v6oaF1Px-rUZ4_Ratq4TtmehugHHQePBx-3tu-xoapzfrd1Q6BrfLX3y-G5pt7WtevDOTkxqg148dfn5H29els-JpuXh6fl3SbRQoqYNE0mWY21wUznJTMFaASdSp2LHHQNwBGkgoyJjIFqtM5MqhQqjUZwLpmYk-vp7s677wFDrDobNLat6nF8rOIFT0VR5iO8maD2LgSPptp52ym_rxhUhwArDtUU4GivJmsR8d_9LX8BRn5sjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28253897</pqid></control><display><type>article</type><title>Effect of crystallization on magnetic domain structure of thinned amorphous FeSiBCuNb ribbons</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, S.X. ; Wang, Y.G. ; Ulvensoen, J.H. ; Hoier, R.</creator><creatorcontrib>Zhou, S.X. ; Wang, Y.G. ; Ulvensoen, J.H. ; Hoier, R.</creatorcontrib><description>Crystallization and associated magnetic domain structure of Fe/sub 73.5/Cu/sub 1/Nb/sub 3/Si/sub 13.5/B/sub 9/ amorphous ribbons have been investigated in in-situ annealing studies by electron transmission microscopy (TEM). Two stages of crystallization, which occurred at 380/spl deg/C and 650/spl deg/C, have been observed. The crystals associated with these temperatures are spherical nuclei with diameters less than 5 nm or clusters of ultrafine grains whose diameters are in the range of 15-20 nm respectively. The products formed at both stages are identified as the /spl alpha/-Fe(Si) phase. The magnetic domain structure of the as-quenched specimen is composed of large and simple domains. There is no evident change in domain structure. Upon the offset of the first crystallization. However, the second stage of crystallization leads to emergence of magnetic ripple. The origin of magnetic ripple is discussed within the framework of the random anisotropy model. From the analysis, effective uniaxial anisotropy in the nanocrystalline alloy may be considered as local random anisotropy and is therefore likely to be the cause of the magnetic ripple. The estimated mean wavelength, /spl lambda/, of the magnetic ripple is approximately 160 nm.&lt; &gt;</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.334231</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Amorphous magnetic materials ; Amorphous materials ; Anisotropic magnetoresistance ; Annealing ; Crystallization ; Iron ; Magnetic anisotropy ; Magnetic domains ; Niobium ; Perpendicular magnetic anisotropy</subject><ispartof>IEEE transactions on magnetics, 1994-11, Vol.30 (6), p.4815-4817</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-dd641bebfe6c791f80ce0c54c7370cb002e04a0613610adcc6f5aaeacef322413</citedby><cites>FETCH-LOGICAL-c343t-dd641bebfe6c791f80ce0c54c7370cb002e04a0613610adcc6f5aaeacef322413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/334231$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/334231$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, S.X.</creatorcontrib><creatorcontrib>Wang, Y.G.</creatorcontrib><creatorcontrib>Ulvensoen, J.H.</creatorcontrib><creatorcontrib>Hoier, R.</creatorcontrib><title>Effect of crystallization on magnetic domain structure of thinned amorphous FeSiBCuNb ribbons</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Crystallization and associated magnetic domain structure of Fe/sub 73.5/Cu/sub 1/Nb/sub 3/Si/sub 13.5/B/sub 9/ amorphous ribbons have been investigated in in-situ annealing studies by electron transmission microscopy (TEM). Two stages of crystallization, which occurred at 380/spl deg/C and 650/spl deg/C, have been observed. The crystals associated with these temperatures are spherical nuclei with diameters less than 5 nm or clusters of ultrafine grains whose diameters are in the range of 15-20 nm respectively. The products formed at both stages are identified as the /spl alpha/-Fe(Si) phase. The magnetic domain structure of the as-quenched specimen is composed of large and simple domains. There is no evident change in domain structure. Upon the offset of the first crystallization. However, the second stage of crystallization leads to emergence of magnetic ripple. The origin of magnetic ripple is discussed within the framework of the random anisotropy model. From the analysis, effective uniaxial anisotropy in the nanocrystalline alloy may be considered as local random anisotropy and is therefore likely to be the cause of the magnetic ripple. The estimated mean wavelength, /spl lambda/, of the magnetic ripple is approximately 160 nm.&lt; &gt;</description><subject>Amorphous magnetic materials</subject><subject>Amorphous materials</subject><subject>Anisotropic magnetoresistance</subject><subject>Annealing</subject><subject>Crystallization</subject><subject>Iron</subject><subject>Magnetic anisotropy</subject><subject>Magnetic domains</subject><subject>Niobium</subject><subject>Perpendicular magnetic anisotropy</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo90E1LxDAQBuAgCq6rB6-echI8dJ189Ouoy64Kix7Uo5Q0nbiRtlmT9LD-ertUhIFhmIdheAm5ZLBgDMpbDgshJBfsiMxYKVkCkJXHZAbAiqSUmTwlZyF8jaNMGczIx8oY1JE6Q7Xfh6ja1v6oaF1Px-rUZ4_Ratq4TtmehugHHQePBx-3tu-xoapzfrd1Q6BrfLX3y-G5pt7WtevDOTkxqg148dfn5H29els-JpuXh6fl3SbRQoqYNE0mWY21wUznJTMFaASdSp2LHHQNwBGkgoyJjIFqtM5MqhQqjUZwLpmYk-vp7s677wFDrDobNLat6nF8rOIFT0VR5iO8maD2LgSPptp52ym_rxhUhwArDtUU4GivJmsR8d_9LX8BRn5sjg</recordid><startdate>19941101</startdate><enddate>19941101</enddate><creator>Zhou, S.X.</creator><creator>Wang, Y.G.</creator><creator>Ulvensoen, J.H.</creator><creator>Hoier, R.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19941101</creationdate><title>Effect of crystallization on magnetic domain structure of thinned amorphous FeSiBCuNb ribbons</title><author>Zhou, S.X. ; Wang, Y.G. ; Ulvensoen, J.H. ; Hoier, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-dd641bebfe6c791f80ce0c54c7370cb002e04a0613610adcc6f5aaeacef322413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Amorphous magnetic materials</topic><topic>Amorphous materials</topic><topic>Anisotropic magnetoresistance</topic><topic>Annealing</topic><topic>Crystallization</topic><topic>Iron</topic><topic>Magnetic anisotropy</topic><topic>Magnetic domains</topic><topic>Niobium</topic><topic>Perpendicular magnetic anisotropy</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, S.X.</creatorcontrib><creatorcontrib>Wang, Y.G.</creatorcontrib><creatorcontrib>Ulvensoen, J.H.</creatorcontrib><creatorcontrib>Hoier, R.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, S.X.</au><au>Wang, Y.G.</au><au>Ulvensoen, J.H.</au><au>Hoier, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of crystallization on magnetic domain structure of thinned amorphous FeSiBCuNb ribbons</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1994-11-01</date><risdate>1994</risdate><volume>30</volume><issue>6</issue><spage>4815</spage><epage>4817</epage><pages>4815-4817</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Crystallization and associated magnetic domain structure of Fe/sub 73.5/Cu/sub 1/Nb/sub 3/Si/sub 13.5/B/sub 9/ amorphous ribbons have been investigated in in-situ annealing studies by electron transmission microscopy (TEM). Two stages of crystallization, which occurred at 380/spl deg/C and 650/spl deg/C, have been observed. The crystals associated with these temperatures are spherical nuclei with diameters less than 5 nm or clusters of ultrafine grains whose diameters are in the range of 15-20 nm respectively. The products formed at both stages are identified as the /spl alpha/-Fe(Si) phase. The magnetic domain structure of the as-quenched specimen is composed of large and simple domains. There is no evident change in domain structure. Upon the offset of the first crystallization. However, the second stage of crystallization leads to emergence of magnetic ripple. The origin of magnetic ripple is discussed within the framework of the random anisotropy model. From the analysis, effective uniaxial anisotropy in the nanocrystalline alloy may be considered as local random anisotropy and is therefore likely to be the cause of the magnetic ripple. The estimated mean wavelength, /spl lambda/, of the magnetic ripple is approximately 160 nm.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/20.334231</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 1994-11, Vol.30 (6), p.4815-4817
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_miscellaneous_28253897
source IEEE Electronic Library (IEL)
subjects Amorphous magnetic materials
Amorphous materials
Anisotropic magnetoresistance
Annealing
Crystallization
Iron
Magnetic anisotropy
Magnetic domains
Niobium
Perpendicular magnetic anisotropy
title Effect of crystallization on magnetic domain structure of thinned amorphous FeSiBCuNb ribbons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20crystallization%20on%20magnetic%20domain%20structure%20of%20thinned%20amorphous%20FeSiBCuNb%20ribbons&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Zhou,%20S.X.&rft.date=1994-11-01&rft.volume=30&rft.issue=6&rft.spage=4815&rft.epage=4817&rft.pages=4815-4817&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.334231&rft_dat=%3Cproquest_RIE%3E28253897%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28253897&rft_id=info:pmid/&rft_ieee_id=334231&rfr_iscdi=true