Modeling of ultrasonic processing
Curing of fiber‐reinforced thermoset polymer composites requires an elevated temperature to accelerate the crosslinking reaction and also hydrostatic pressure to consolidate the part and suppress the formation of voids. These processing conditions can be provided by autoclaves of appropriate size, b...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2004-08, Vol.93 (4), p.1609-1615 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1615 |
---|---|
container_issue | 4 |
container_start_page | 1609 |
container_title | Journal of applied polymer science |
container_volume | 93 |
creator | Roylance, Margaret Player, John Zukas, Walter Roylance, David |
description | Curing of fiber‐reinforced thermoset polymer composites requires an elevated temperature to accelerate the crosslinking reaction and also hydrostatic pressure to consolidate the part and suppress the formation of voids. These processing conditions can be provided by autoclaves of appropriate size, but these are expensive and sometimes difficult to schedule. Ultrasonic debulking followed by oven cure is an attractive alternative to autoclave cure. In this technique a movable “horn” driven at ultrasonic frequency is applied to the surface of the uncured part. This generates pressure and at the same time produces heating by viscoelastic dissipation. The part can be debulked to net shape and staged through the action of the ultrasound. There are a large enough number of experimental parameters in ultrasonic debulking and staging to make purely empirical process optimization difficult, and this paper outlines numerical simulation methods useful in understanding and developing the process. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1609–1615, 2004 |
doi_str_mv | 10.1002/app.20595 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28247093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28229131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4695-a88599561291c694e1b23eab9908af073975ad048350c31f81af7a1235067b7f3</originalsourceid><addsrcrecordid>eNqNkM1OAjEURhujiYgufANcaOJioD_TabskRFCDiAmGZXMprRkdZsYWory91UFdmbi6ae75zm0-hE4J7hKMaQ_quksxV3wPtQhWIkkzKvdRK-5IIpXih-gohGeMCeE4a6Gzu2ppi7x86lSusynWHkJV5qZT-8rYEOLiGB04KII92c02ehxezQbXyfh-dDPojxOTZoonICWP-oxQRUymUksWlFlYKIUlOCyYEhyWOJWMY8OIkwScAELjMxML4VgbXTTeePp1Y8Nar_JgbFFAaatN0FTSVGDF_gPGPzASwcsGNL4KwVuna5-vwG81wfqzLR3b0l9tRfZ8J4VgoHAeSpOH3wBXhPOURq7XcG95Ybd_C3V_Ov02J00iD2v7_pMA_6IzwQTX88lIz2fj28nkYaSH7ANYXIUO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28229131</pqid></control><display><type>article</type><title>Modeling of ultrasonic processing</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Roylance, Margaret ; Player, John ; Zukas, Walter ; Roylance, David</creator><creatorcontrib>Roylance, Margaret ; Player, John ; Zukas, Walter ; Roylance, David</creatorcontrib><description>Curing of fiber‐reinforced thermoset polymer composites requires an elevated temperature to accelerate the crosslinking reaction and also hydrostatic pressure to consolidate the part and suppress the formation of voids. These processing conditions can be provided by autoclaves of appropriate size, but these are expensive and sometimes difficult to schedule. Ultrasonic debulking followed by oven cure is an attractive alternative to autoclave cure. In this technique a movable “horn” driven at ultrasonic frequency is applied to the surface of the uncured part. This generates pressure and at the same time produces heating by viscoelastic dissipation. The part can be debulked to net shape and staged through the action of the ultrasound. There are a large enough number of experimental parameters in ultrasonic debulking and staging to make purely empirical process optimization difficult, and this paper outlines numerical simulation methods useful in understanding and developing the process. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1609–1615, 2004</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.20595</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; composites ; computer modeling ; curing of polymers ; differential scanning calorimetry (DSC) ; Exact sciences and technology ; Physicochemistry of polymers ; Polymer industry, paints, wood ; Technology of polymers ; viscoelastic properties</subject><ispartof>Journal of applied polymer science, 2004-08, Vol.93 (4), p.1609-1615</ispartof><rights>Copyright © 2004 Wiley Periodicals, Inc.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4695-a88599561291c694e1b23eab9908af073975ad048350c31f81af7a1235067b7f3</citedby><cites>FETCH-LOGICAL-c4695-a88599561291c694e1b23eab9908af073975ad048350c31f81af7a1235067b7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.20595$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.20595$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15915542$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Roylance, Margaret</creatorcontrib><creatorcontrib>Player, John</creatorcontrib><creatorcontrib>Zukas, Walter</creatorcontrib><creatorcontrib>Roylance, David</creatorcontrib><title>Modeling of ultrasonic processing</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Curing of fiber‐reinforced thermoset polymer composites requires an elevated temperature to accelerate the crosslinking reaction and also hydrostatic pressure to consolidate the part and suppress the formation of voids. These processing conditions can be provided by autoclaves of appropriate size, but these are expensive and sometimes difficult to schedule. Ultrasonic debulking followed by oven cure is an attractive alternative to autoclave cure. In this technique a movable “horn” driven at ultrasonic frequency is applied to the surface of the uncured part. This generates pressure and at the same time produces heating by viscoelastic dissipation. The part can be debulked to net shape and staged through the action of the ultrasound. There are a large enough number of experimental parameters in ultrasonic debulking and staging to make purely empirical process optimization difficult, and this paper outlines numerical simulation methods useful in understanding and developing the process. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1609–1615, 2004</description><subject>Applied sciences</subject><subject>composites</subject><subject>computer modeling</subject><subject>curing of polymers</subject><subject>differential scanning calorimetry (DSC)</subject><subject>Exact sciences and technology</subject><subject>Physicochemistry of polymers</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><subject>viscoelastic properties</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OAjEURhujiYgufANcaOJioD_TabskRFCDiAmGZXMprRkdZsYWory91UFdmbi6ae75zm0-hE4J7hKMaQ_quksxV3wPtQhWIkkzKvdRK-5IIpXih-gohGeMCeE4a6Gzu2ppi7x86lSusynWHkJV5qZT-8rYEOLiGB04KII92c02ehxezQbXyfh-dDPojxOTZoonICWP-oxQRUymUksWlFlYKIUlOCyYEhyWOJWMY8OIkwScAELjMxML4VgbXTTeePp1Y8Nar_JgbFFAaatN0FTSVGDF_gPGPzASwcsGNL4KwVuna5-vwG81wfqzLR3b0l9tRfZ8J4VgoHAeSpOH3wBXhPOURq7XcG95Ybd_C3V_Ov02J00iD2v7_pMA_6IzwQTX88lIz2fj28nkYaSH7ANYXIUO</recordid><startdate>20040815</startdate><enddate>20040815</enddate><creator>Roylance, Margaret</creator><creator>Player, John</creator><creator>Zukas, Walter</creator><creator>Roylance, David</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SR</scope><scope>JG9</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040815</creationdate><title>Modeling of ultrasonic processing</title><author>Roylance, Margaret ; Player, John ; Zukas, Walter ; Roylance, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4695-a88599561291c694e1b23eab9908af073975ad048350c31f81af7a1235067b7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>composites</topic><topic>computer modeling</topic><topic>curing of polymers</topic><topic>differential scanning calorimetry (DSC)</topic><topic>Exact sciences and technology</topic><topic>Physicochemistry of polymers</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><topic>viscoelastic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roylance, Margaret</creatorcontrib><creatorcontrib>Player, John</creatorcontrib><creatorcontrib>Zukas, Walter</creatorcontrib><creatorcontrib>Roylance, David</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roylance, Margaret</au><au>Player, John</au><au>Zukas, Walter</au><au>Roylance, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of ultrasonic processing</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2004-08-15</date><risdate>2004</risdate><volume>93</volume><issue>4</issue><spage>1609</spage><epage>1615</epage><pages>1609-1615</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Curing of fiber‐reinforced thermoset polymer composites requires an elevated temperature to accelerate the crosslinking reaction and also hydrostatic pressure to consolidate the part and suppress the formation of voids. These processing conditions can be provided by autoclaves of appropriate size, but these are expensive and sometimes difficult to schedule. Ultrasonic debulking followed by oven cure is an attractive alternative to autoclave cure. In this technique a movable “horn” driven at ultrasonic frequency is applied to the surface of the uncured part. This generates pressure and at the same time produces heating by viscoelastic dissipation. The part can be debulked to net shape and staged through the action of the ultrasound. There are a large enough number of experimental parameters in ultrasonic debulking and staging to make purely empirical process optimization difficult, and this paper outlines numerical simulation methods useful in understanding and developing the process. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1609–1615, 2004</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.20595</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2004-08, Vol.93 (4), p.1609-1615 |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_miscellaneous_28247093 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences composites computer modeling curing of polymers differential scanning calorimetry (DSC) Exact sciences and technology Physicochemistry of polymers Polymer industry, paints, wood Technology of polymers viscoelastic properties |
title | Modeling of ultrasonic processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20ultrasonic%20processing&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Roylance,%20Margaret&rft.date=2004-08-15&rft.volume=93&rft.issue=4&rft.spage=1609&rft.epage=1615&rft.pages=1609-1615&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.20595&rft_dat=%3Cproquest_cross%3E28229131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28229131&rft_id=info:pmid/&rfr_iscdi=true |