Mn‐Oxygen Compounds Coordinated Ruthenium Sites with Deprotonated and Low Oxophilic Microenvironments for Membrane Electrolyzer‐Based H2‐Production

Among the platinum‐group metals, ruthenium (Ru), with a low water dissociation energy, is considered a promising alternative to substitute Pt for catalyzing hydrogen evolution reaction (HER). However, optimizing the adsorption–desorption energies of H* and OH* intermediates on Ru catalytic sites is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-09, Vol.35 (38), p.e2303331-e2303331
Hauptverfasser: Yang, Chengdong, Wu, Zihe, Zhao, Zhenyang, Gao, Yun, Tian, Ma, Luo, Xianglin, Cheng, Chong, Wang, Yi, Li, Shuang, Zhao, Changsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2303331
container_issue 38
container_start_page e2303331
container_title Advanced materials (Weinheim)
container_volume 35
creator Yang, Chengdong
Wu, Zihe
Zhao, Zhenyang
Gao, Yun
Tian, Ma
Luo, Xianglin
Cheng, Chong
Wang, Yi
Li, Shuang
Zhao, Changsheng
description Among the platinum‐group metals, ruthenium (Ru), with a low water dissociation energy, is considered a promising alternative to substitute Pt for catalyzing hydrogen evolution reaction (HER). However, optimizing the adsorption–desorption energies of H* and OH* intermediates on Ru catalytic sites is extremely desirable but remains challenging. Inspired by the natural catalytic characteristics of Mn‐oxygen complex, this study reports to design Mn‐oxygen compounds coordinated Ru sites (MOC‐Ru) with deprotonated and low oxophilic microenvironments for modulating the adsorption–desorption of H* and OH* to promote HER kinetics. Benefiting from the unique advantages of MOC structures, including weakened HOH bond at interface, electron donation ability, and deprotonation capability, the MOC‐Ru exhibits extremely low overpotential and ultralong stability in both acidic and alkaline electrolytes. Experimental observations and theoretical calculations elucidate that the MOC can accelerate water dissociation kinetics and promote OH* desorption in alkaline conditions and trigger the long‐range H* spillover for H2‐release in acid conditions. The outstanding activity and stability of membrane electrolyzer display that the MOC‐Ru catalyst holds great potential as cathode for H2‐production. This study provides essential insights into the crucial roles of deprotonated and low oxophilic microenvironments in HER catalysis and offers a new pathway to create an efficient water‐splitting cathode.
doi_str_mv 10.1002/adma.202303331
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2824691993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866687550</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-a3cfa32a165b5846210542e68a8812742831582a6922b73a80878f13e8c6e5893</originalsourceid><addsrcrecordid>eNpdjzlOAzEYhS0EEmFpqS3R0EzwMnbsEkIgSImCWOrImflDjGbsYHsIUHEEWq7HSbAEFdV7xae3IHRESZ8Swk5N3Zo-I4wTzjndQj0qGC1KosU26hHNRaFlqXbRXoxPhBAtieyhr6n7_vicvb49gsND36595-qYnQ-1dSZBjW-7tAJnuxbf2QQRb2xa4QtYB5_8L2FcjSd-g2evfr2yja3w1FbBg3uxwbsWXIp46QOeQrsIxgEeNVCl4Ju3dwi5_tzEnDJm2d4EX3dVst4doJ2laSIc_uk-ergc3Q_HxWR2dT08mxRrJmQqDK-WhjNDpVgIVUpGiSgZSGWUomxQMsWpUMxIzdhiwI0iaqCWlIOqJAil-T46-c3Nh547iGne2lhB0-ShvotzplgpNdWaZ_T4H_rku-DyukxJKdVACMJ_AEJCfF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866687550</pqid></control><display><type>article</type><title>Mn‐Oxygen Compounds Coordinated Ruthenium Sites with Deprotonated and Low Oxophilic Microenvironments for Membrane Electrolyzer‐Based H2‐Production</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Chengdong ; Wu, Zihe ; Zhao, Zhenyang ; Gao, Yun ; Tian, Ma ; Luo, Xianglin ; Cheng, Chong ; Wang, Yi ; Li, Shuang ; Zhao, Changsheng</creator><creatorcontrib>Yang, Chengdong ; Wu, Zihe ; Zhao, Zhenyang ; Gao, Yun ; Tian, Ma ; Luo, Xianglin ; Cheng, Chong ; Wang, Yi ; Li, Shuang ; Zhao, Changsheng</creatorcontrib><description>Among the platinum‐group metals, ruthenium (Ru), with a low water dissociation energy, is considered a promising alternative to substitute Pt for catalyzing hydrogen evolution reaction (HER). However, optimizing the adsorption–desorption energies of H* and OH* intermediates on Ru catalytic sites is extremely desirable but remains challenging. Inspired by the natural catalytic characteristics of Mn‐oxygen complex, this study reports to design Mn‐oxygen compounds coordinated Ru sites (MOC‐Ru) with deprotonated and low oxophilic microenvironments for modulating the adsorption–desorption of H* and OH* to promote HER kinetics. Benefiting from the unique advantages of MOC structures, including weakened HOH bond at interface, electron donation ability, and deprotonation capability, the MOC‐Ru exhibits extremely low overpotential and ultralong stability in both acidic and alkaline electrolytes. Experimental observations and theoretical calculations elucidate that the MOC can accelerate water dissociation kinetics and promote OH* desorption in alkaline conditions and trigger the long‐range H* spillover for H2‐release in acid conditions. The outstanding activity and stability of membrane electrolyzer display that the MOC‐Ru catalyst holds great potential as cathode for H2‐production. This study provides essential insights into the crucial roles of deprotonated and low oxophilic microenvironments in HER catalysis and offers a new pathway to create an efficient water‐splitting cathode.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202303331</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Catalysis ; Cathodes ; Desorption ; Electrolytes ; Energy of dissociation ; Free energy ; Heat of formation ; Hydrogen evolution reactions ; Kinetics ; Materials science ; Membranes ; Oxygen compounds ; Ruthenium ; Stability ; Water splitting</subject><ispartof>Advanced materials (Weinheim), 2023-09, Vol.35 (38), p.e2303331-e2303331</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yang, Chengdong</creatorcontrib><creatorcontrib>Wu, Zihe</creatorcontrib><creatorcontrib>Zhao, Zhenyang</creatorcontrib><creatorcontrib>Gao, Yun</creatorcontrib><creatorcontrib>Tian, Ma</creatorcontrib><creatorcontrib>Luo, Xianglin</creatorcontrib><creatorcontrib>Cheng, Chong</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Zhao, Changsheng</creatorcontrib><title>Mn‐Oxygen Compounds Coordinated Ruthenium Sites with Deprotonated and Low Oxophilic Microenvironments for Membrane Electrolyzer‐Based H2‐Production</title><title>Advanced materials (Weinheim)</title><description>Among the platinum‐group metals, ruthenium (Ru), with a low water dissociation energy, is considered a promising alternative to substitute Pt for catalyzing hydrogen evolution reaction (HER). However, optimizing the adsorption–desorption energies of H* and OH* intermediates on Ru catalytic sites is extremely desirable but remains challenging. Inspired by the natural catalytic characteristics of Mn‐oxygen complex, this study reports to design Mn‐oxygen compounds coordinated Ru sites (MOC‐Ru) with deprotonated and low oxophilic microenvironments for modulating the adsorption–desorption of H* and OH* to promote HER kinetics. Benefiting from the unique advantages of MOC structures, including weakened HOH bond at interface, electron donation ability, and deprotonation capability, the MOC‐Ru exhibits extremely low overpotential and ultralong stability in both acidic and alkaline electrolytes. Experimental observations and theoretical calculations elucidate that the MOC can accelerate water dissociation kinetics and promote OH* desorption in alkaline conditions and trigger the long‐range H* spillover for H2‐release in acid conditions. The outstanding activity and stability of membrane electrolyzer display that the MOC‐Ru catalyst holds great potential as cathode for H2‐production. This study provides essential insights into the crucial roles of deprotonated and low oxophilic microenvironments in HER catalysis and offers a new pathway to create an efficient water‐splitting cathode.</description><subject>Adsorption</subject><subject>Catalysis</subject><subject>Cathodes</subject><subject>Desorption</subject><subject>Electrolytes</subject><subject>Energy of dissociation</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Hydrogen evolution reactions</subject><subject>Kinetics</subject><subject>Materials science</subject><subject>Membranes</subject><subject>Oxygen compounds</subject><subject>Ruthenium</subject><subject>Stability</subject><subject>Water splitting</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdjzlOAzEYhS0EEmFpqS3R0EzwMnbsEkIgSImCWOrImflDjGbsYHsIUHEEWq7HSbAEFdV7xae3IHRESZ8Swk5N3Zo-I4wTzjndQj0qGC1KosU26hHNRaFlqXbRXoxPhBAtieyhr6n7_vicvb49gsND36595-qYnQ-1dSZBjW-7tAJnuxbf2QQRb2xa4QtYB5_8L2FcjSd-g2evfr2yja3w1FbBg3uxwbsWXIp46QOeQrsIxgEeNVCl4Ju3dwi5_tzEnDJm2d4EX3dVst4doJ2laSIc_uk-ergc3Q_HxWR2dT08mxRrJmQqDK-WhjNDpVgIVUpGiSgZSGWUomxQMsWpUMxIzdhiwI0iaqCWlIOqJAil-T46-c3Nh547iGne2lhB0-ShvotzplgpNdWaZ_T4H_rku-DyukxJKdVACMJ_AEJCfF4</recordid><startdate>20230921</startdate><enddate>20230921</enddate><creator>Yang, Chengdong</creator><creator>Wu, Zihe</creator><creator>Zhao, Zhenyang</creator><creator>Gao, Yun</creator><creator>Tian, Ma</creator><creator>Luo, Xianglin</creator><creator>Cheng, Chong</creator><creator>Wang, Yi</creator><creator>Li, Shuang</creator><creator>Zhao, Changsheng</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>20230921</creationdate><title>Mn‐Oxygen Compounds Coordinated Ruthenium Sites with Deprotonated and Low Oxophilic Microenvironments for Membrane Electrolyzer‐Based H2‐Production</title><author>Yang, Chengdong ; Wu, Zihe ; Zhao, Zhenyang ; Gao, Yun ; Tian, Ma ; Luo, Xianglin ; Cheng, Chong ; Wang, Yi ; Li, Shuang ; Zhao, Changsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-a3cfa32a165b5846210542e68a8812742831582a6922b73a80878f13e8c6e5893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Catalysis</topic><topic>Cathodes</topic><topic>Desorption</topic><topic>Electrolytes</topic><topic>Energy of dissociation</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Hydrogen evolution reactions</topic><topic>Kinetics</topic><topic>Materials science</topic><topic>Membranes</topic><topic>Oxygen compounds</topic><topic>Ruthenium</topic><topic>Stability</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chengdong</creatorcontrib><creatorcontrib>Wu, Zihe</creatorcontrib><creatorcontrib>Zhao, Zhenyang</creatorcontrib><creatorcontrib>Gao, Yun</creatorcontrib><creatorcontrib>Tian, Ma</creatorcontrib><creatorcontrib>Luo, Xianglin</creatorcontrib><creatorcontrib>Cheng, Chong</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Zhao, Changsheng</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chengdong</au><au>Wu, Zihe</au><au>Zhao, Zhenyang</au><au>Gao, Yun</au><au>Tian, Ma</au><au>Luo, Xianglin</au><au>Cheng, Chong</au><au>Wang, Yi</au><au>Li, Shuang</au><au>Zhao, Changsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mn‐Oxygen Compounds Coordinated Ruthenium Sites with Deprotonated and Low Oxophilic Microenvironments for Membrane Electrolyzer‐Based H2‐Production</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2023-09-21</date><risdate>2023</risdate><volume>35</volume><issue>38</issue><spage>e2303331</spage><epage>e2303331</epage><pages>e2303331-e2303331</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Among the platinum‐group metals, ruthenium (Ru), with a low water dissociation energy, is considered a promising alternative to substitute Pt for catalyzing hydrogen evolution reaction (HER). However, optimizing the adsorption–desorption energies of H* and OH* intermediates on Ru catalytic sites is extremely desirable but remains challenging. Inspired by the natural catalytic characteristics of Mn‐oxygen complex, this study reports to design Mn‐oxygen compounds coordinated Ru sites (MOC‐Ru) with deprotonated and low oxophilic microenvironments for modulating the adsorption–desorption of H* and OH* to promote HER kinetics. Benefiting from the unique advantages of MOC structures, including weakened HOH bond at interface, electron donation ability, and deprotonation capability, the MOC‐Ru exhibits extremely low overpotential and ultralong stability in both acidic and alkaline electrolytes. Experimental observations and theoretical calculations elucidate that the MOC can accelerate water dissociation kinetics and promote OH* desorption in alkaline conditions and trigger the long‐range H* spillover for H2‐release in acid conditions. The outstanding activity and stability of membrane electrolyzer display that the MOC‐Ru catalyst holds great potential as cathode for H2‐production. This study provides essential insights into the crucial roles of deprotonated and low oxophilic microenvironments in HER catalysis and offers a new pathway to create an efficient water‐splitting cathode.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202303331</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-09, Vol.35 (38), p.e2303331-e2303331
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2824691993
source Wiley Online Library Journals Frontfile Complete
subjects Adsorption
Catalysis
Cathodes
Desorption
Electrolytes
Energy of dissociation
Free energy
Heat of formation
Hydrogen evolution reactions
Kinetics
Materials science
Membranes
Oxygen compounds
Ruthenium
Stability
Water splitting
title Mn‐Oxygen Compounds Coordinated Ruthenium Sites with Deprotonated and Low Oxophilic Microenvironments for Membrane Electrolyzer‐Based H2‐Production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mn%E2%80%90Oxygen%20Compounds%20Coordinated%20Ruthenium%20Sites%20with%20Deprotonated%20and%20Low%20Oxophilic%20Microenvironments%20for%20Membrane%20Electrolyzer%E2%80%90Based%20H2%E2%80%90Production&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yang,%20Chengdong&rft.date=2023-09-21&rft.volume=35&rft.issue=38&rft.spage=e2303331&rft.epage=e2303331&rft.pages=e2303331-e2303331&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202303331&rft_dat=%3Cproquest%3E2866687550%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866687550&rft_id=info:pmid/&rfr_iscdi=true