Mn‐Oxygen Compounds Coordinated Ruthenium Sites with Deprotonated and Low Oxophilic Microenvironments for Membrane Electrolyzer‐Based H2‐Production
Among the platinum‐group metals, ruthenium (Ru), with a low water dissociation energy, is considered a promising alternative to substitute Pt for catalyzing hydrogen evolution reaction (HER). However, optimizing the adsorption–desorption energies of H* and OH* intermediates on Ru catalytic sites is...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2023-09, Vol.35 (38), p.e2303331-e2303331 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2303331 |
---|---|
container_issue | 38 |
container_start_page | e2303331 |
container_title | Advanced materials (Weinheim) |
container_volume | 35 |
creator | Yang, Chengdong Wu, Zihe Zhao, Zhenyang Gao, Yun Tian, Ma Luo, Xianglin Cheng, Chong Wang, Yi Li, Shuang Zhao, Changsheng |
description | Among the platinum‐group metals, ruthenium (Ru), with a low water dissociation energy, is considered a promising alternative to substitute Pt for catalyzing hydrogen evolution reaction (HER). However, optimizing the adsorption–desorption energies of H* and OH* intermediates on Ru catalytic sites is extremely desirable but remains challenging. Inspired by the natural catalytic characteristics of Mn‐oxygen complex, this study reports to design Mn‐oxygen compounds coordinated Ru sites (MOC‐Ru) with deprotonated and low oxophilic microenvironments for modulating the adsorption–desorption of H* and OH* to promote HER kinetics. Benefiting from the unique advantages of MOC structures, including weakened HOH bond at interface, electron donation ability, and deprotonation capability, the MOC‐Ru exhibits extremely low overpotential and ultralong stability in both acidic and alkaline electrolytes. Experimental observations and theoretical calculations elucidate that the MOC can accelerate water dissociation kinetics and promote OH* desorption in alkaline conditions and trigger the long‐range H* spillover for H2‐release in acid conditions. The outstanding activity and stability of membrane electrolyzer display that the MOC‐Ru catalyst holds great potential as cathode for H2‐production. This study provides essential insights into the crucial roles of deprotonated and low oxophilic microenvironments in HER catalysis and offers a new pathway to create an efficient water‐splitting cathode. |
doi_str_mv | 10.1002/adma.202303331 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2824691993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866687550</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-a3cfa32a165b5846210542e68a8812742831582a6922b73a80878f13e8c6e5893</originalsourceid><addsrcrecordid>eNpdjzlOAzEYhS0EEmFpqS3R0EzwMnbsEkIgSImCWOrImflDjGbsYHsIUHEEWq7HSbAEFdV7xae3IHRESZ8Swk5N3Zo-I4wTzjndQj0qGC1KosU26hHNRaFlqXbRXoxPhBAtieyhr6n7_vicvb49gsND36595-qYnQ-1dSZBjW-7tAJnuxbf2QQRb2xa4QtYB5_8L2FcjSd-g2evfr2yja3w1FbBg3uxwbsWXIp46QOeQrsIxgEeNVCl4Ju3dwi5_tzEnDJm2d4EX3dVst4doJ2laSIc_uk-ergc3Q_HxWR2dT08mxRrJmQqDK-WhjNDpVgIVUpGiSgZSGWUomxQMsWpUMxIzdhiwI0iaqCWlIOqJAil-T46-c3Nh547iGne2lhB0-ShvotzplgpNdWaZ_T4H_rku-DyukxJKdVACMJ_AEJCfF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866687550</pqid></control><display><type>article</type><title>Mn‐Oxygen Compounds Coordinated Ruthenium Sites with Deprotonated and Low Oxophilic Microenvironments for Membrane Electrolyzer‐Based H2‐Production</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Chengdong ; Wu, Zihe ; Zhao, Zhenyang ; Gao, Yun ; Tian, Ma ; Luo, Xianglin ; Cheng, Chong ; Wang, Yi ; Li, Shuang ; Zhao, Changsheng</creator><creatorcontrib>Yang, Chengdong ; Wu, Zihe ; Zhao, Zhenyang ; Gao, Yun ; Tian, Ma ; Luo, Xianglin ; Cheng, Chong ; Wang, Yi ; Li, Shuang ; Zhao, Changsheng</creatorcontrib><description>Among the platinum‐group metals, ruthenium (Ru), with a low water dissociation energy, is considered a promising alternative to substitute Pt for catalyzing hydrogen evolution reaction (HER). However, optimizing the adsorption–desorption energies of H* and OH* intermediates on Ru catalytic sites is extremely desirable but remains challenging. Inspired by the natural catalytic characteristics of Mn‐oxygen complex, this study reports to design Mn‐oxygen compounds coordinated Ru sites (MOC‐Ru) with deprotonated and low oxophilic microenvironments for modulating the adsorption–desorption of H* and OH* to promote HER kinetics. Benefiting from the unique advantages of MOC structures, including weakened HOH bond at interface, electron donation ability, and deprotonation capability, the MOC‐Ru exhibits extremely low overpotential and ultralong stability in both acidic and alkaline electrolytes. Experimental observations and theoretical calculations elucidate that the MOC can accelerate water dissociation kinetics and promote OH* desorption in alkaline conditions and trigger the long‐range H* spillover for H2‐release in acid conditions. The outstanding activity and stability of membrane electrolyzer display that the MOC‐Ru catalyst holds great potential as cathode for H2‐production. This study provides essential insights into the crucial roles of deprotonated and low oxophilic microenvironments in HER catalysis and offers a new pathway to create an efficient water‐splitting cathode.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202303331</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Catalysis ; Cathodes ; Desorption ; Electrolytes ; Energy of dissociation ; Free energy ; Heat of formation ; Hydrogen evolution reactions ; Kinetics ; Materials science ; Membranes ; Oxygen compounds ; Ruthenium ; Stability ; Water splitting</subject><ispartof>Advanced materials (Weinheim), 2023-09, Vol.35 (38), p.e2303331-e2303331</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yang, Chengdong</creatorcontrib><creatorcontrib>Wu, Zihe</creatorcontrib><creatorcontrib>Zhao, Zhenyang</creatorcontrib><creatorcontrib>Gao, Yun</creatorcontrib><creatorcontrib>Tian, Ma</creatorcontrib><creatorcontrib>Luo, Xianglin</creatorcontrib><creatorcontrib>Cheng, Chong</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Zhao, Changsheng</creatorcontrib><title>Mn‐Oxygen Compounds Coordinated Ruthenium Sites with Deprotonated and Low Oxophilic Microenvironments for Membrane Electrolyzer‐Based H2‐Production</title><title>Advanced materials (Weinheim)</title><description>Among the platinum‐group metals, ruthenium (Ru), with a low water dissociation energy, is considered a promising alternative to substitute Pt for catalyzing hydrogen evolution reaction (HER). However, optimizing the adsorption–desorption energies of H* and OH* intermediates on Ru catalytic sites is extremely desirable but remains challenging. Inspired by the natural catalytic characteristics of Mn‐oxygen complex, this study reports to design Mn‐oxygen compounds coordinated Ru sites (MOC‐Ru) with deprotonated and low oxophilic microenvironments for modulating the adsorption–desorption of H* and OH* to promote HER kinetics. Benefiting from the unique advantages of MOC structures, including weakened HOH bond at interface, electron donation ability, and deprotonation capability, the MOC‐Ru exhibits extremely low overpotential and ultralong stability in both acidic and alkaline electrolytes. Experimental observations and theoretical calculations elucidate that the MOC can accelerate water dissociation kinetics and promote OH* desorption in alkaline conditions and trigger the long‐range H* spillover for H2‐release in acid conditions. The outstanding activity and stability of membrane electrolyzer display that the MOC‐Ru catalyst holds great potential as cathode for H2‐production. This study provides essential insights into the crucial roles of deprotonated and low oxophilic microenvironments in HER catalysis and offers a new pathway to create an efficient water‐splitting cathode.</description><subject>Adsorption</subject><subject>Catalysis</subject><subject>Cathodes</subject><subject>Desorption</subject><subject>Electrolytes</subject><subject>Energy of dissociation</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Hydrogen evolution reactions</subject><subject>Kinetics</subject><subject>Materials science</subject><subject>Membranes</subject><subject>Oxygen compounds</subject><subject>Ruthenium</subject><subject>Stability</subject><subject>Water splitting</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdjzlOAzEYhS0EEmFpqS3R0EzwMnbsEkIgSImCWOrImflDjGbsYHsIUHEEWq7HSbAEFdV7xae3IHRESZ8Swk5N3Zo-I4wTzjndQj0qGC1KosU26hHNRaFlqXbRXoxPhBAtieyhr6n7_vicvb49gsND36595-qYnQ-1dSZBjW-7tAJnuxbf2QQRb2xa4QtYB5_8L2FcjSd-g2evfr2yja3w1FbBg3uxwbsWXIp46QOeQrsIxgEeNVCl4Ju3dwi5_tzEnDJm2d4EX3dVst4doJ2laSIc_uk-ergc3Q_HxWR2dT08mxRrJmQqDK-WhjNDpVgIVUpGiSgZSGWUomxQMsWpUMxIzdhiwI0iaqCWlIOqJAil-T46-c3Nh547iGne2lhB0-ShvotzplgpNdWaZ_T4H_rku-DyukxJKdVACMJ_AEJCfF4</recordid><startdate>20230921</startdate><enddate>20230921</enddate><creator>Yang, Chengdong</creator><creator>Wu, Zihe</creator><creator>Zhao, Zhenyang</creator><creator>Gao, Yun</creator><creator>Tian, Ma</creator><creator>Luo, Xianglin</creator><creator>Cheng, Chong</creator><creator>Wang, Yi</creator><creator>Li, Shuang</creator><creator>Zhao, Changsheng</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>20230921</creationdate><title>Mn‐Oxygen Compounds Coordinated Ruthenium Sites with Deprotonated and Low Oxophilic Microenvironments for Membrane Electrolyzer‐Based H2‐Production</title><author>Yang, Chengdong ; Wu, Zihe ; Zhao, Zhenyang ; Gao, Yun ; Tian, Ma ; Luo, Xianglin ; Cheng, Chong ; Wang, Yi ; Li, Shuang ; Zhao, Changsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-a3cfa32a165b5846210542e68a8812742831582a6922b73a80878f13e8c6e5893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Catalysis</topic><topic>Cathodes</topic><topic>Desorption</topic><topic>Electrolytes</topic><topic>Energy of dissociation</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Hydrogen evolution reactions</topic><topic>Kinetics</topic><topic>Materials science</topic><topic>Membranes</topic><topic>Oxygen compounds</topic><topic>Ruthenium</topic><topic>Stability</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chengdong</creatorcontrib><creatorcontrib>Wu, Zihe</creatorcontrib><creatorcontrib>Zhao, Zhenyang</creatorcontrib><creatorcontrib>Gao, Yun</creatorcontrib><creatorcontrib>Tian, Ma</creatorcontrib><creatorcontrib>Luo, Xianglin</creatorcontrib><creatorcontrib>Cheng, Chong</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Zhao, Changsheng</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chengdong</au><au>Wu, Zihe</au><au>Zhao, Zhenyang</au><au>Gao, Yun</au><au>Tian, Ma</au><au>Luo, Xianglin</au><au>Cheng, Chong</au><au>Wang, Yi</au><au>Li, Shuang</au><au>Zhao, Changsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mn‐Oxygen Compounds Coordinated Ruthenium Sites with Deprotonated and Low Oxophilic Microenvironments for Membrane Electrolyzer‐Based H2‐Production</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2023-09-21</date><risdate>2023</risdate><volume>35</volume><issue>38</issue><spage>e2303331</spage><epage>e2303331</epage><pages>e2303331-e2303331</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Among the platinum‐group metals, ruthenium (Ru), with a low water dissociation energy, is considered a promising alternative to substitute Pt for catalyzing hydrogen evolution reaction (HER). However, optimizing the adsorption–desorption energies of H* and OH* intermediates on Ru catalytic sites is extremely desirable but remains challenging. Inspired by the natural catalytic characteristics of Mn‐oxygen complex, this study reports to design Mn‐oxygen compounds coordinated Ru sites (MOC‐Ru) with deprotonated and low oxophilic microenvironments for modulating the adsorption–desorption of H* and OH* to promote HER kinetics. Benefiting from the unique advantages of MOC structures, including weakened HOH bond at interface, electron donation ability, and deprotonation capability, the MOC‐Ru exhibits extremely low overpotential and ultralong stability in both acidic and alkaline electrolytes. Experimental observations and theoretical calculations elucidate that the MOC can accelerate water dissociation kinetics and promote OH* desorption in alkaline conditions and trigger the long‐range H* spillover for H2‐release in acid conditions. The outstanding activity and stability of membrane electrolyzer display that the MOC‐Ru catalyst holds great potential as cathode for H2‐production. This study provides essential insights into the crucial roles of deprotonated and low oxophilic microenvironments in HER catalysis and offers a new pathway to create an efficient water‐splitting cathode.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202303331</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2023-09, Vol.35 (38), p.e2303331-e2303331 |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2824691993 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adsorption Catalysis Cathodes Desorption Electrolytes Energy of dissociation Free energy Heat of formation Hydrogen evolution reactions Kinetics Materials science Membranes Oxygen compounds Ruthenium Stability Water splitting |
title | Mn‐Oxygen Compounds Coordinated Ruthenium Sites with Deprotonated and Low Oxophilic Microenvironments for Membrane Electrolyzer‐Based H2‐Production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mn%E2%80%90Oxygen%20Compounds%20Coordinated%20Ruthenium%20Sites%20with%20Deprotonated%20and%20Low%20Oxophilic%20Microenvironments%20for%20Membrane%20Electrolyzer%E2%80%90Based%20H2%E2%80%90Production&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yang,%20Chengdong&rft.date=2023-09-21&rft.volume=35&rft.issue=38&rft.spage=e2303331&rft.epage=e2303331&rft.pages=e2303331-e2303331&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202303331&rft_dat=%3Cproquest%3E2866687550%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866687550&rft_id=info:pmid/&rfr_iscdi=true |