Dual-asymmetrically selective interfaces-enhanced poly(lactic acid)-based nanofabric with sweat management and switchable radiative cooling and thermal insulation
[Display omitted] •Asymmetrically optical surfaces integrate radiative cooling and thermal insulation.•Interfaces-engineered nanofabric achieves ∼12.8℃ cooling and ∼7℃ thermal insulation.•Opposite wettability imparts nanofabric with directional sweat transferring capacity.•Synergistic thermal-wettin...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2023-10, Vol.648, p.117-128 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 128 |
---|---|
container_issue | |
container_start_page | 117 |
container_title | Journal of colloid and interface science |
container_volume | 648 |
creator | Feng, Shuangjiang Yao, Lei Chen, Xi Liu, Chenghuan Bu, Xiaohai Huang, Yuzhong He, Man Zhou, Yuming |
description | [Display omitted]
•Asymmetrically optical surfaces integrate radiative cooling and thermal insulation.•Interfaces-engineered nanofabric achieves ∼12.8℃ cooling and ∼7℃ thermal insulation.•Opposite wettability imparts nanofabric with directional sweat transferring capacity.•Synergistic thermal-wetting regulation can be achieved by simple interface inversion.
All-weather personal thermal regulation has far been challenged by variable environments especially the regulatory failure caused by highly-dense solar radiation, low environmental radiation and the fluctuated epidermal moisture in different seasons. Herein, from the design of interface selectivity, dual-asymmetrically optical and wetting selective polylactic acid-based (PLA) Janus-type nanofabric is proposed to achieve on-demand radiative cooling and heating as well as sweat transportation. Hollow TiO2 particles are introduced in PLA nanofabric causing high interface scattering (∼99%) and infrared emission (∼91.2%) as well as surface hydrophobicity (CA > 140°). The strictly optical and wetting selectivity help achieve ∼12.8℃ of net cooling effect under > 1500 W/m2 of solar power and ∼5℃ of cooling advantage higher than cotton fabric and sweat resistance simultaneously. Contrarily, the semi-embedded Ag nanowires (AgNWs) with high conductivity (0.245 Ω/sq) endows the nanofabric with visible water permeability and excellent interface reflection for thermal radiation from body (>65%) thus causing ∼7℃ of thermal shielding. Through simple interface flipping, synergistical cooling-sweat reducing and warming-sweat resisting can be achieved to satisfy the thermal regulation in all weather. Compared with conventional fabrics, multi-functional Janus-type passive personal thermal management nanofabrics would be of great significance to achieve the personal health maintenance and energy sustainability. |
doi_str_mv | 10.1016/j.jcis.2023.05.185 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2824691343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979723009955</els_id><sourcerecordid>2824691343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-6fce322421ace8f709dfa9520abace409fa29eb176e9e6085c02cb60443fb1b73</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhD3BAOZZDgj_iZC1xQeVTqsQFztbYGXe9cpzFdlrt3-GX4u0WjpwsjZ95Z-yHkNeMdoyy4d2-21ufO0656Kjs2FY-IRtGlWxHRsVTsqGUs1aNarwgL3LeU8qYlOo5uRAjV1IMYkN-f1whtJCP84wleQshHJuMAW3xd9j4WDA5sJhbjDuIFqfmsITjVYAK2Aasn962BnKtR4iLA1NDmntfdk2-RyjNDBFuccZYGohTLfpid2ACNgkmDw9T7LIEH28fgLLDNEOok_Ma6vUSX5JnDkLGV4_nJfn5-dOP66_tzfcv364_3LRWyKG0g7MoOO85q-tu3UjV5EBJTsHUQk-VA67QsHFAhQPdSku5NQPte-EMM6O4JFfn3ENafq2Yi559thgCRFzWrPmW94NiohcV5WfUpiXnhE4fkp8hHTWj-uRG7_XJjT650VTq6qY2vXnMX82M07-WvzIq8P4MYH3lnceks_V4-nOfqg89Lf5_-X8AtE6lJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824691343</pqid></control><display><type>article</type><title>Dual-asymmetrically selective interfaces-enhanced poly(lactic acid)-based nanofabric with sweat management and switchable radiative cooling and thermal insulation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Feng, Shuangjiang ; Yao, Lei ; Chen, Xi ; Liu, Chenghuan ; Bu, Xiaohai ; Huang, Yuzhong ; He, Man ; Zhou, Yuming</creator><creatorcontrib>Feng, Shuangjiang ; Yao, Lei ; Chen, Xi ; Liu, Chenghuan ; Bu, Xiaohai ; Huang, Yuzhong ; He, Man ; Zhou, Yuming</creatorcontrib><description>[Display omitted]
•Asymmetrically optical surfaces integrate radiative cooling and thermal insulation.•Interfaces-engineered nanofabric achieves ∼12.8℃ cooling and ∼7℃ thermal insulation.•Opposite wettability imparts nanofabric with directional sweat transferring capacity.•Synergistic thermal-wetting regulation can be achieved by simple interface inversion.
All-weather personal thermal regulation has far been challenged by variable environments especially the regulatory failure caused by highly-dense solar radiation, low environmental radiation and the fluctuated epidermal moisture in different seasons. Herein, from the design of interface selectivity, dual-asymmetrically optical and wetting selective polylactic acid-based (PLA) Janus-type nanofabric is proposed to achieve on-demand radiative cooling and heating as well as sweat transportation. Hollow TiO2 particles are introduced in PLA nanofabric causing high interface scattering (∼99%) and infrared emission (∼91.2%) as well as surface hydrophobicity (CA > 140°). The strictly optical and wetting selectivity help achieve ∼12.8℃ of net cooling effect under > 1500 W/m2 of solar power and ∼5℃ of cooling advantage higher than cotton fabric and sweat resistance simultaneously. Contrarily, the semi-embedded Ag nanowires (AgNWs) with high conductivity (0.245 Ω/sq) endows the nanofabric with visible water permeability and excellent interface reflection for thermal radiation from body (>65%) thus causing ∼7℃ of thermal shielding. Through simple interface flipping, synergistical cooling-sweat reducing and warming-sweat resisting can be achieved to satisfy the thermal regulation in all weather. Compared with conventional fabrics, multi-functional Janus-type passive personal thermal management nanofabrics would be of great significance to achieve the personal health maintenance and energy sustainability.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2023.05.185</identifier><identifier>PMID: 37295363</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Asymmetric interfaces ; Janus-type nanofabric ; Optical-wetting selectivity ; Radiative cooling ; Thermal insulation</subject><ispartof>Journal of colloid and interface science, 2023-10, Vol.648, p.117-128</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-6fce322421ace8f709dfa9520abace409fa29eb176e9e6085c02cb60443fb1b73</citedby><cites>FETCH-LOGICAL-c356t-6fce322421ace8f709dfa9520abace409fa29eb176e9e6085c02cb60443fb1b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2023.05.185$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37295363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Shuangjiang</creatorcontrib><creatorcontrib>Yao, Lei</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Liu, Chenghuan</creatorcontrib><creatorcontrib>Bu, Xiaohai</creatorcontrib><creatorcontrib>Huang, Yuzhong</creatorcontrib><creatorcontrib>He, Man</creatorcontrib><creatorcontrib>Zhou, Yuming</creatorcontrib><title>Dual-asymmetrically selective interfaces-enhanced poly(lactic acid)-based nanofabric with sweat management and switchable radiative cooling and thermal insulation</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted]
•Asymmetrically optical surfaces integrate radiative cooling and thermal insulation.•Interfaces-engineered nanofabric achieves ∼12.8℃ cooling and ∼7℃ thermal insulation.•Opposite wettability imparts nanofabric with directional sweat transferring capacity.•Synergistic thermal-wetting regulation can be achieved by simple interface inversion.
All-weather personal thermal regulation has far been challenged by variable environments especially the regulatory failure caused by highly-dense solar radiation, low environmental radiation and the fluctuated epidermal moisture in different seasons. Herein, from the design of interface selectivity, dual-asymmetrically optical and wetting selective polylactic acid-based (PLA) Janus-type nanofabric is proposed to achieve on-demand radiative cooling and heating as well as sweat transportation. Hollow TiO2 particles are introduced in PLA nanofabric causing high interface scattering (∼99%) and infrared emission (∼91.2%) as well as surface hydrophobicity (CA > 140°). The strictly optical and wetting selectivity help achieve ∼12.8℃ of net cooling effect under > 1500 W/m2 of solar power and ∼5℃ of cooling advantage higher than cotton fabric and sweat resistance simultaneously. Contrarily, the semi-embedded Ag nanowires (AgNWs) with high conductivity (0.245 Ω/sq) endows the nanofabric with visible water permeability and excellent interface reflection for thermal radiation from body (>65%) thus causing ∼7℃ of thermal shielding. Through simple interface flipping, synergistical cooling-sweat reducing and warming-sweat resisting can be achieved to satisfy the thermal regulation in all weather. Compared with conventional fabrics, multi-functional Janus-type passive personal thermal management nanofabrics would be of great significance to achieve the personal health maintenance and energy sustainability.</description><subject>Asymmetric interfaces</subject><subject>Janus-type nanofabric</subject><subject>Optical-wetting selectivity</subject><subject>Radiative cooling</subject><subject>Thermal insulation</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EokvhD3BAOZZDgj_iZC1xQeVTqsQFztbYGXe9cpzFdlrt3-GX4u0WjpwsjZ95Z-yHkNeMdoyy4d2-21ufO0656Kjs2FY-IRtGlWxHRsVTsqGUs1aNarwgL3LeU8qYlOo5uRAjV1IMYkN-f1whtJCP84wleQshHJuMAW3xd9j4WDA5sJhbjDuIFqfmsITjVYAK2Aasn962BnKtR4iLA1NDmntfdk2-RyjNDBFuccZYGohTLfpid2ACNgkmDw9T7LIEH28fgLLDNEOok_Ma6vUSX5JnDkLGV4_nJfn5-dOP66_tzfcv364_3LRWyKG0g7MoOO85q-tu3UjV5EBJTsHUQk-VA67QsHFAhQPdSku5NQPte-EMM6O4JFfn3ENafq2Yi559thgCRFzWrPmW94NiohcV5WfUpiXnhE4fkp8hHTWj-uRG7_XJjT650VTq6qY2vXnMX82M07-WvzIq8P4MYH3lnceks_V4-nOfqg89Lf5_-X8AtE6lJQ</recordid><startdate>20231015</startdate><enddate>20231015</enddate><creator>Feng, Shuangjiang</creator><creator>Yao, Lei</creator><creator>Chen, Xi</creator><creator>Liu, Chenghuan</creator><creator>Bu, Xiaohai</creator><creator>Huang, Yuzhong</creator><creator>He, Man</creator><creator>Zhou, Yuming</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20231015</creationdate><title>Dual-asymmetrically selective interfaces-enhanced poly(lactic acid)-based nanofabric with sweat management and switchable radiative cooling and thermal insulation</title><author>Feng, Shuangjiang ; Yao, Lei ; Chen, Xi ; Liu, Chenghuan ; Bu, Xiaohai ; Huang, Yuzhong ; He, Man ; Zhou, Yuming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-6fce322421ace8f709dfa9520abace409fa29eb176e9e6085c02cb60443fb1b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymmetric interfaces</topic><topic>Janus-type nanofabric</topic><topic>Optical-wetting selectivity</topic><topic>Radiative cooling</topic><topic>Thermal insulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Shuangjiang</creatorcontrib><creatorcontrib>Yao, Lei</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Liu, Chenghuan</creatorcontrib><creatorcontrib>Bu, Xiaohai</creatorcontrib><creatorcontrib>Huang, Yuzhong</creatorcontrib><creatorcontrib>He, Man</creatorcontrib><creatorcontrib>Zhou, Yuming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Shuangjiang</au><au>Yao, Lei</au><au>Chen, Xi</au><au>Liu, Chenghuan</au><au>Bu, Xiaohai</au><au>Huang, Yuzhong</au><au>He, Man</au><au>Zhou, Yuming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-asymmetrically selective interfaces-enhanced poly(lactic acid)-based nanofabric with sweat management and switchable radiative cooling and thermal insulation</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2023-10-15</date><risdate>2023</risdate><volume>648</volume><spage>117</spage><epage>128</epage><pages>117-128</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
•Asymmetrically optical surfaces integrate radiative cooling and thermal insulation.•Interfaces-engineered nanofabric achieves ∼12.8℃ cooling and ∼7℃ thermal insulation.•Opposite wettability imparts nanofabric with directional sweat transferring capacity.•Synergistic thermal-wetting regulation can be achieved by simple interface inversion.
All-weather personal thermal regulation has far been challenged by variable environments especially the regulatory failure caused by highly-dense solar radiation, low environmental radiation and the fluctuated epidermal moisture in different seasons. Herein, from the design of interface selectivity, dual-asymmetrically optical and wetting selective polylactic acid-based (PLA) Janus-type nanofabric is proposed to achieve on-demand radiative cooling and heating as well as sweat transportation. Hollow TiO2 particles are introduced in PLA nanofabric causing high interface scattering (∼99%) and infrared emission (∼91.2%) as well as surface hydrophobicity (CA > 140°). The strictly optical and wetting selectivity help achieve ∼12.8℃ of net cooling effect under > 1500 W/m2 of solar power and ∼5℃ of cooling advantage higher than cotton fabric and sweat resistance simultaneously. Contrarily, the semi-embedded Ag nanowires (AgNWs) with high conductivity (0.245 Ω/sq) endows the nanofabric with visible water permeability and excellent interface reflection for thermal radiation from body (>65%) thus causing ∼7℃ of thermal shielding. Through simple interface flipping, synergistical cooling-sweat reducing and warming-sweat resisting can be achieved to satisfy the thermal regulation in all weather. Compared with conventional fabrics, multi-functional Janus-type passive personal thermal management nanofabrics would be of great significance to achieve the personal health maintenance and energy sustainability.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37295363</pmid><doi>10.1016/j.jcis.2023.05.185</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2023-10, Vol.648, p.117-128 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_2824691343 |
source | Access via ScienceDirect (Elsevier) |
subjects | Asymmetric interfaces Janus-type nanofabric Optical-wetting selectivity Radiative cooling Thermal insulation |
title | Dual-asymmetrically selective interfaces-enhanced poly(lactic acid)-based nanofabric with sweat management and switchable radiative cooling and thermal insulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A32%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-asymmetrically%20selective%20interfaces-enhanced%20poly(lactic%20acid)-based%20nanofabric%20with%20sweat%20management%20and%20switchable%20radiative%20cooling%20and%20thermal%20insulation&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Feng,%20Shuangjiang&rft.date=2023-10-15&rft.volume=648&rft.spage=117&rft.epage=128&rft.pages=117-128&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2023.05.185&rft_dat=%3Cproquest_cross%3E2824691343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824691343&rft_id=info:pmid/37295363&rft_els_id=S0021979723009955&rfr_iscdi=true |