Dynamics of nonlinear porous media with applications to soil liquefaction
This paper provides a description of the extension of Biot's theory for dynamic behavior of saturated porous media into the nonlinear regime that was introduced by the second author in 1980. It also provides a finite element implementation of this extension and two numerical applications involv...
Gespeichert in:
Veröffentlicht in: | Soil dynamics and earthquake engineering (1984) 2006-06, Vol.26 (6), p.648-665 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 665 |
---|---|
container_issue | 6 |
container_start_page | 648 |
container_title | Soil dynamics and earthquake engineering (1984) |
container_volume | 26 |
creator | Popescu, Radu Prevost, Jean H. Deodatis, George Chakrabortty, Pradipta |
description | This paper provides a description of the extension of Biot's theory for dynamic behavior of saturated porous media into the nonlinear regime that was introduced by the second author in 1980. It also provides a finite element implementation of this extension and two numerical applications involving the seismic behavior of saturated soil deposits. In the first numerical application, the dynamic interaction between liquefying soil and a structure sitting on the ground surface is examined, with emphasis on the interplay between the seismic loading rate and the (evolving) characteristic frequency of the soil–structure system. The attenuation of seismic energy as the seismic waves pass through softened soil is also discussed. The second numerical application involves the seismically induced liquefaction of stochastically spatially variable soils. It is explained why more pore-water pressure is generated in a heterogeneous soil than in a corresponding uniform soil. Comparisons are also provided with experimental centrifuge data. |
doi_str_mv | 10.1016/j.soildyn.2006.01.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28244674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0267726106000169</els_id><sourcerecordid>28244674</sourcerecordid><originalsourceid>FETCH-LOGICAL-a393t-400bbba99f8cf0f2e53b0e2b686b7230f3af6357b3278e917d1f13d6edc24c653</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouH78BCEXvbVOkjZpTyLr18KCFwVvIU0TzNImNekq--9t2QWPwgsDwzvzzLwIXRHICRB-u8lTcF278zkF4DmQSeURWpBK1BkryMcxWgDlIhOUk1N0ltIGgAhS8QVaPey86p1OOFjsg--cNyriIcSwTbg3rVP4x42fWA1D57QaXfAJjwHPSNy5r62xSs_dC3RiVZfM5aGeo_enx7flS7Z-fV4t79eZYjUbswKgaRpV17bSFiw1JWvA0IZXvBGUgWXKclaKhlFRmZqIlljCWm5aTQvNS3aObvZ7hxgmehpl75I2Xae8mW6WtKJFwUUxGcu9UceQUjRWDtH1Ku4kATkHJzfyEJycg5NAJs2A6wNAJa06G5XXLv0NV0CAVmTy3e19Zvr225kok3bG6ymzaPQo2-D-If0CBGCHxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28244674</pqid></control><display><type>article</type><title>Dynamics of nonlinear porous media with applications to soil liquefaction</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Popescu, Radu ; Prevost, Jean H. ; Deodatis, George ; Chakrabortty, Pradipta</creator><creatorcontrib>Popescu, Radu ; Prevost, Jean H. ; Deodatis, George ; Chakrabortty, Pradipta</creatorcontrib><description>This paper provides a description of the extension of Biot's theory for dynamic behavior of saturated porous media into the nonlinear regime that was introduced by the second author in 1980. It also provides a finite element implementation of this extension and two numerical applications involving the seismic behavior of saturated soil deposits. In the first numerical application, the dynamic interaction between liquefying soil and a structure sitting on the ground surface is examined, with emphasis on the interplay between the seismic loading rate and the (evolving) characteristic frequency of the soil–structure system. The attenuation of seismic energy as the seismic waves pass through softened soil is also discussed. The second numerical application involves the seismically induced liquefaction of stochastically spatially variable soils. It is explained why more pore-water pressure is generated in a heterogeneous soil than in a corresponding uniform soil. Comparisons are also provided with experimental centrifuge data.</description><identifier>ISSN: 0267-7261</identifier><identifier>EISSN: 1879-341X</identifier><identifier>DOI: 10.1016/j.soildyn.2006.01.015</identifier><identifier>CODEN: SDEEEJ</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Earthquakes, seismology ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; Internal geophysics ; Natural hazards: prediction, damages, etc</subject><ispartof>Soil dynamics and earthquake engineering (1984), 2006-06, Vol.26 (6), p.648-665</ispartof><rights>2006 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a393t-400bbba99f8cf0f2e53b0e2b686b7230f3af6357b3278e917d1f13d6edc24c653</citedby><cites>FETCH-LOGICAL-a393t-400bbba99f8cf0f2e53b0e2b686b7230f3af6357b3278e917d1f13d6edc24c653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.soildyn.2006.01.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18010281$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Popescu, Radu</creatorcontrib><creatorcontrib>Prevost, Jean H.</creatorcontrib><creatorcontrib>Deodatis, George</creatorcontrib><creatorcontrib>Chakrabortty, Pradipta</creatorcontrib><title>Dynamics of nonlinear porous media with applications to soil liquefaction</title><title>Soil dynamics and earthquake engineering (1984)</title><description>This paper provides a description of the extension of Biot's theory for dynamic behavior of saturated porous media into the nonlinear regime that was introduced by the second author in 1980. It also provides a finite element implementation of this extension and two numerical applications involving the seismic behavior of saturated soil deposits. In the first numerical application, the dynamic interaction between liquefying soil and a structure sitting on the ground surface is examined, with emphasis on the interplay between the seismic loading rate and the (evolving) characteristic frequency of the soil–structure system. The attenuation of seismic energy as the seismic waves pass through softened soil is also discussed. The second numerical application involves the seismically induced liquefaction of stochastically spatially variable soils. It is explained why more pore-water pressure is generated in a heterogeneous soil than in a corresponding uniform soil. Comparisons are also provided with experimental centrifuge data.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Earthquakes, seismology</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>Internal geophysics</subject><subject>Natural hazards: prediction, damages, etc</subject><issn>0267-7261</issn><issn>1879-341X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouH78BCEXvbVOkjZpTyLr18KCFwVvIU0TzNImNekq--9t2QWPwgsDwzvzzLwIXRHICRB-u8lTcF278zkF4DmQSeURWpBK1BkryMcxWgDlIhOUk1N0ltIGgAhS8QVaPey86p1OOFjsg--cNyriIcSwTbg3rVP4x42fWA1D57QaXfAJjwHPSNy5r62xSs_dC3RiVZfM5aGeo_enx7flS7Z-fV4t79eZYjUbswKgaRpV17bSFiw1JWvA0IZXvBGUgWXKclaKhlFRmZqIlljCWm5aTQvNS3aObvZ7hxgmehpl75I2Xae8mW6WtKJFwUUxGcu9UceQUjRWDtH1Ku4kATkHJzfyEJycg5NAJs2A6wNAJa06G5XXLv0NV0CAVmTy3e19Zvr225kok3bG6ymzaPQo2-D-If0CBGCHxA</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Popescu, Radu</creator><creator>Prevost, Jean H.</creator><creator>Deodatis, George</creator><creator>Chakrabortty, Pradipta</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20060601</creationdate><title>Dynamics of nonlinear porous media with applications to soil liquefaction</title><author>Popescu, Radu ; Prevost, Jean H. ; Deodatis, George ; Chakrabortty, Pradipta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a393t-400bbba99f8cf0f2e53b0e2b686b7230f3af6357b3278e917d1f13d6edc24c653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Earthquakes, seismology</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>Internal geophysics</topic><topic>Natural hazards: prediction, damages, etc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popescu, Radu</creatorcontrib><creatorcontrib>Prevost, Jean H.</creatorcontrib><creatorcontrib>Deodatis, George</creatorcontrib><creatorcontrib>Chakrabortty, Pradipta</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Soil dynamics and earthquake engineering (1984)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Popescu, Radu</au><au>Prevost, Jean H.</au><au>Deodatis, George</au><au>Chakrabortty, Pradipta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of nonlinear porous media with applications to soil liquefaction</atitle><jtitle>Soil dynamics and earthquake engineering (1984)</jtitle><date>2006-06-01</date><risdate>2006</risdate><volume>26</volume><issue>6</issue><spage>648</spage><epage>665</epage><pages>648-665</pages><issn>0267-7261</issn><eissn>1879-341X</eissn><coden>SDEEEJ</coden><abstract>This paper provides a description of the extension of Biot's theory for dynamic behavior of saturated porous media into the nonlinear regime that was introduced by the second author in 1980. It also provides a finite element implementation of this extension and two numerical applications involving the seismic behavior of saturated soil deposits. In the first numerical application, the dynamic interaction between liquefying soil and a structure sitting on the ground surface is examined, with emphasis on the interplay between the seismic loading rate and the (evolving) characteristic frequency of the soil–structure system. The attenuation of seismic energy as the seismic waves pass through softened soil is also discussed. The second numerical application involves the seismically induced liquefaction of stochastically spatially variable soils. It is explained why more pore-water pressure is generated in a heterogeneous soil than in a corresponding uniform soil. Comparisons are also provided with experimental centrifuge data.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.soildyn.2006.01.015</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0267-7261 |
ispartof | Soil dynamics and earthquake engineering (1984), 2006-06, Vol.26 (6), p.648-665 |
issn | 0267-7261 1879-341X |
language | eng |
recordid | cdi_proquest_miscellaneous_28244674 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Earth sciences Earth, ocean, space Earthquakes, seismology Engineering and environment geology. Geothermics Engineering geology Exact sciences and technology Internal geophysics Natural hazards: prediction, damages, etc |
title | Dynamics of nonlinear porous media with applications to soil liquefaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20nonlinear%20porous%20media%20with%20applications%20to%20soil%20liquefaction&rft.jtitle=Soil%20dynamics%20and%20earthquake%20engineering%20(1984)&rft.au=Popescu,%20Radu&rft.date=2006-06-01&rft.volume=26&rft.issue=6&rft.spage=648&rft.epage=665&rft.pages=648-665&rft.issn=0267-7261&rft.eissn=1879-341X&rft.coden=SDEEEJ&rft_id=info:doi/10.1016/j.soildyn.2006.01.015&rft_dat=%3Cproquest_cross%3E28244674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28244674&rft_id=info:pmid/&rft_els_id=S0267726106000169&rfr_iscdi=true |