Divergent fields, charge, and capacitance in FDTD simulations

Finite-difference time-domain (FDTD) grids are often described as being divergence-free in a source-free region of space. However, in the presence of a source, the continuity equation states that charges may be deposited in the grid, while Gauss's law dictates that the fields must diverge from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 1998-12, Vol.46 (12), p.2131-2136
Hauptverfasser: Wagner, C.L., Schneider, J.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2136
container_issue 12
container_start_page 2131
container_title IEEE transactions on microwave theory and techniques
container_volume 46
creator Wagner, C.L.
Schneider, J.B.
description Finite-difference time-domain (FDTD) grids are often described as being divergence-free in a source-free region of space. However, in the presence of a source, the continuity equation states that charges may be deposited in the grid, while Gauss's law dictates that the fields must diverge from any deposited charge. The FDTD method will accurately predict the (diverging) fields associated with charges deposited by a source embedded in the grid. However, the behavior of the charge differs from that of charge in the physical world, unless the FDTD implementation is explicitly modified to include charge dynamics. Indeed, the way in which charge behaves in an FDTD grid naturally leads to the definition of grid capacitance. This grid capacitance, though small, is an intrinsic property of the grid and is independent of the way in which energy is introduced. To account for this grid capacitance, one should use a slightly modified form of the lumped-element capacitor model currently used.
doi_str_mv 10.1109/22.739294
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28244221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>739294</ieee_id><sourcerecordid>28244221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-887aadb3636c9c2d0398c57a0d290a5fc0216ce5fbfafd18cbbde9455c344e653</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBmALgUQpDKxMmZCQmuLPxB4YUEsBqRJLma2LfQajNClxisS_JygVK9Pp7n10w0vIJaNzxqi55XxeCsONPCITplSZm6Kkx2RCKdO5kZqekrOUPoZVKqon5G4Zv7B7w6bPQsTap1nm3mE4zDJofOZgBy720DjMYpOtlptlluJ2X0Mf2yadk5MAdcKLw5yS19XDZvGUr18enxf369wJqvtc6xLAV6IQhTOOeyqMdqoE6rmhoIKjnBUOVagCBM-0qyqPRirlhJRYKDEl1-PfXdd-7jH1dhuTw7qGBtt9slxzKTln_8NSGs10McCbEbquTanDYHdd3EL3bRm1v01azu3Y5GCvRhsR8c8dwh_PeWz4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27498186</pqid></control><display><type>article</type><title>Divergent fields, charge, and capacitance in FDTD simulations</title><source>IEEE Electronic Library (IEL)</source><creator>Wagner, C.L. ; Schneider, J.B.</creator><creatorcontrib>Wagner, C.L. ; Schneider, J.B.</creatorcontrib><description>Finite-difference time-domain (FDTD) grids are often described as being divergence-free in a source-free region of space. However, in the presence of a source, the continuity equation states that charges may be deposited in the grid, while Gauss's law dictates that the fields must diverge from any deposited charge. The FDTD method will accurately predict the (diverging) fields associated with charges deposited by a source embedded in the grid. However, the behavior of the charge differs from that of charge in the physical world, unless the FDTD implementation is explicitly modified to include charge dynamics. Indeed, the way in which charge behaves in an FDTD grid naturally leads to the definition of grid capacitance. This grid capacitance, though small, is an intrinsic property of the grid and is independent of the way in which energy is introduced. To account for this grid capacitance, one should use a slightly modified form of the lumped-element capacitor model currently used.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/22.739294</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>IEEE</publisher><subject>Capacitance ; Charge carrier processes ; Computational modeling ; Difference equations ; Finite difference methods ; Gaussian processes ; Maxwell equations ; Physics ; Space charge ; Time domain analysis</subject><ispartof>IEEE transactions on microwave theory and techniques, 1998-12, Vol.46 (12), p.2131-2136</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-887aadb3636c9c2d0398c57a0d290a5fc0216ce5fbfafd18cbbde9455c344e653</citedby><cites>FETCH-LOGICAL-c308t-887aadb3636c9c2d0398c57a0d290a5fc0216ce5fbfafd18cbbde9455c344e653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/739294$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/739294$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wagner, C.L.</creatorcontrib><creatorcontrib>Schneider, J.B.</creatorcontrib><title>Divergent fields, charge, and capacitance in FDTD simulations</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>Finite-difference time-domain (FDTD) grids are often described as being divergence-free in a source-free region of space. However, in the presence of a source, the continuity equation states that charges may be deposited in the grid, while Gauss's law dictates that the fields must diverge from any deposited charge. The FDTD method will accurately predict the (diverging) fields associated with charges deposited by a source embedded in the grid. However, the behavior of the charge differs from that of charge in the physical world, unless the FDTD implementation is explicitly modified to include charge dynamics. Indeed, the way in which charge behaves in an FDTD grid naturally leads to the definition of grid capacitance. This grid capacitance, though small, is an intrinsic property of the grid and is independent of the way in which energy is introduced. To account for this grid capacitance, one should use a slightly modified form of the lumped-element capacitor model currently used.</description><subject>Capacitance</subject><subject>Charge carrier processes</subject><subject>Computational modeling</subject><subject>Difference equations</subject><subject>Finite difference methods</subject><subject>Gaussian processes</subject><subject>Maxwell equations</subject><subject>Physics</subject><subject>Space charge</subject><subject>Time domain analysis</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0D1PwzAQBmALgUQpDKxMmZCQmuLPxB4YUEsBqRJLma2LfQajNClxisS_JygVK9Pp7n10w0vIJaNzxqi55XxeCsONPCITplSZm6Kkx2RCKdO5kZqekrOUPoZVKqon5G4Zv7B7w6bPQsTap1nm3mE4zDJofOZgBy720DjMYpOtlptlluJ2X0Mf2yadk5MAdcKLw5yS19XDZvGUr18enxf369wJqvtc6xLAV6IQhTOOeyqMdqoE6rmhoIKjnBUOVagCBM-0qyqPRirlhJRYKDEl1-PfXdd-7jH1dhuTw7qGBtt9slxzKTln_8NSGs10McCbEbquTanDYHdd3EL3bRm1v01azu3Y5GCvRhsR8c8dwh_PeWz4</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>Wagner, C.L.</creator><creator>Schneider, J.B.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope></search><sort><creationdate>19981201</creationdate><title>Divergent fields, charge, and capacitance in FDTD simulations</title><author>Wagner, C.L. ; Schneider, J.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-887aadb3636c9c2d0398c57a0d290a5fc0216ce5fbfafd18cbbde9455c344e653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Capacitance</topic><topic>Charge carrier processes</topic><topic>Computational modeling</topic><topic>Difference equations</topic><topic>Finite difference methods</topic><topic>Gaussian processes</topic><topic>Maxwell equations</topic><topic>Physics</topic><topic>Space charge</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, C.L.</creatorcontrib><creatorcontrib>Schneider, J.B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wagner, C.L.</au><au>Schneider, J.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergent fields, charge, and capacitance in FDTD simulations</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>1998-12-01</date><risdate>1998</risdate><volume>46</volume><issue>12</issue><spage>2131</spage><epage>2136</epage><pages>2131-2136</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>Finite-difference time-domain (FDTD) grids are often described as being divergence-free in a source-free region of space. However, in the presence of a source, the continuity equation states that charges may be deposited in the grid, while Gauss's law dictates that the fields must diverge from any deposited charge. The FDTD method will accurately predict the (diverging) fields associated with charges deposited by a source embedded in the grid. However, the behavior of the charge differs from that of charge in the physical world, unless the FDTD implementation is explicitly modified to include charge dynamics. Indeed, the way in which charge behaves in an FDTD grid naturally leads to the definition of grid capacitance. This grid capacitance, though small, is an intrinsic property of the grid and is independent of the way in which energy is introduced. To account for this grid capacitance, one should use a slightly modified form of the lumped-element capacitor model currently used.</abstract><pub>IEEE</pub><doi>10.1109/22.739294</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 1998-12, Vol.46 (12), p.2131-2136
issn 0018-9480
1557-9670
language eng
recordid cdi_proquest_miscellaneous_28244221
source IEEE Electronic Library (IEL)
subjects Capacitance
Charge carrier processes
Computational modeling
Difference equations
Finite difference methods
Gaussian processes
Maxwell equations
Physics
Space charge
Time domain analysis
title Divergent fields, charge, and capacitance in FDTD simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergent%20fields,%20charge,%20and%20capacitance%20in%20FDTD%20simulations&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Wagner,%20C.L.&rft.date=1998-12-01&rft.volume=46&rft.issue=12&rft.spage=2131&rft.epage=2136&rft.pages=2131-2136&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/22.739294&rft_dat=%3Cproquest_RIE%3E28244221%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27498186&rft_id=info:pmid/&rft_ieee_id=739294&rfr_iscdi=true