De Rham model for string topology
Using the theory of iterated integrals, we give new short proofs of some of the main theorems of string topology including the one which relates Chas-Sullivan algebra structure on the homology of the free loop space of a simply connected closed oriented manifold to the Hochschild cohomology of the d...
Gespeichert in:
Veröffentlicht in: | International Mathematics Research Notices 2004, Vol.2004 (55), p.2955-2981 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2981 |
---|---|
container_issue | 55 |
container_start_page | 2955 |
container_title | International Mathematics Research Notices |
container_volume | 2004 |
creator | Merkulov, S. A. |
description | Using the theory of iterated integrals, we give new short proofs of some of the main theorems of string topology including the one which relates Chas-Sullivan algebra structure on the homology of the free loop space of a simply connected closed oriented manifold to the Hochschild cohomology of the de Rham algebra. |
doi_str_mv | 10.1155/S1073792804132662 |
format | Article |
fullrecord | <record><control><sourceid>proquest_oup_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_28242983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1155/S1073792804132662</oup_id><sourcerecordid>28242983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-a27ed00717a17bfde60ef2bb36e5430e37031d9602e19e11013205b74585113e3</originalsourceid><addsrcrecordid>eNplkM1OwzAQhC0EEqXwANzChROBXTu24yMqhYIqIfFbcbGcZlMCSR3iVKJvT6oiLpx2pPlmtBrGjhHOEaW8eETQQhueQoKCK8V32ABVqmNEo3d73dvxxt9nByF8AHBtAAfs5Iqih3dXR7XPqYoK30aha8vlIup84yu_WB-yvcJVgY5-75A9X4-fRpN4en9zO7qcxnMBposd15QDaNQOdVbkpIAKnmVCkUwEkNAgMDcKOKEhROjfBJnpRKYSUZAYstNtb9P6rxWFztZlmFNVuSX5VbA85Qk3qejBsy3oV41t2rJ27doi2M0O9t8OPR5v8TJ09P0XcO2nVT0q7WT2Zl-UxDtQM_sqfgBEx1uj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28242983</pqid></control><display><type>article</type><title>De Rham model for string topology</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Merkulov, S. A.</creator><creatorcontrib>Merkulov, S. A.</creatorcontrib><description>Using the theory of iterated integrals, we give new short proofs of some of the main theorems of string topology including the one which relates Chas-Sullivan algebra structure on the homology of the free loop space of a simply connected closed oriented manifold to the Hochschild cohomology of the de Rham algebra.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-1197</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1155/S1073792804132662</identifier><language>eng</language><publisher>Hindawi Publishing Corporation</publisher><ispartof>International Mathematics Research Notices, 2004, Vol.2004 (55), p.2955-2981</ispartof><rights>Copyright © 2004 Hindawi Publishing Corporation. All rights reserved. 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-a27ed00717a17bfde60ef2bb36e5430e37031d9602e19e11013205b74585113e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Merkulov, S. A.</creatorcontrib><title>De Rham model for string topology</title><title>International Mathematics Research Notices</title><description>Using the theory of iterated integrals, we give new short proofs of some of the main theorems of string topology including the one which relates Chas-Sullivan algebra structure on the homology of the free loop space of a simply connected closed oriented manifold to the Hochschild cohomology of the de Rham algebra.</description><issn>1073-7928</issn><issn>1687-1197</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNplkM1OwzAQhC0EEqXwANzChROBXTu24yMqhYIqIfFbcbGcZlMCSR3iVKJvT6oiLpx2pPlmtBrGjhHOEaW8eETQQhueQoKCK8V32ABVqmNEo3d73dvxxt9nByF8AHBtAAfs5Iqih3dXR7XPqYoK30aha8vlIup84yu_WB-yvcJVgY5-75A9X4-fRpN4en9zO7qcxnMBposd15QDaNQOdVbkpIAKnmVCkUwEkNAgMDcKOKEhROjfBJnpRKYSUZAYstNtb9P6rxWFztZlmFNVuSX5VbA85Qk3qejBsy3oV41t2rJ27doi2M0O9t8OPR5v8TJ09P0XcO2nVT0q7WT2Zl-UxDtQM_sqfgBEx1uj</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Merkulov, S. A.</creator><general>Hindawi Publishing Corporation</general><scope>BSCLL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2004</creationdate><title>De Rham model for string topology</title><author>Merkulov, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-a27ed00717a17bfde60ef2bb36e5430e37031d9602e19e11013205b74585113e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merkulov, S. A.</creatorcontrib><collection>Istex</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International Mathematics Research Notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merkulov, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De Rham model for string topology</atitle><jtitle>International Mathematics Research Notices</jtitle><date>2004</date><risdate>2004</risdate><volume>2004</volume><issue>55</issue><spage>2955</spage><epage>2981</epage><pages>2955-2981</pages><issn>1073-7928</issn><eissn>1687-1197</eissn><eissn>1687-0247</eissn><abstract>Using the theory of iterated integrals, we give new short proofs of some of the main theorems of string topology including the one which relates Chas-Sullivan algebra structure on the homology of the free loop space of a simply connected closed oriented manifold to the Hochschild cohomology of the de Rham algebra.</abstract><pub>Hindawi Publishing Corporation</pub><doi>10.1155/S1073792804132662</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-7928 |
ispartof | International Mathematics Research Notices, 2004, Vol.2004 (55), p.2955-2981 |
issn | 1073-7928 1687-1197 1687-0247 |
language | eng |
recordid | cdi_proquest_miscellaneous_28242983 |
source | Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | De Rham model for string topology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A19%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_oup_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De%20Rham%20model%20for%20string%20topology&rft.jtitle=International%20Mathematics%20Research%20Notices&rft.au=Merkulov,%20S.%20A.&rft.date=2004&rft.volume=2004&rft.issue=55&rft.spage=2955&rft.epage=2981&rft.pages=2955-2981&rft.issn=1073-7928&rft.eissn=1687-1197&rft_id=info:doi/10.1155/S1073792804132662&rft_dat=%3Cproquest_oup_p%3E28242983%3C/proquest_oup_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28242983&rft_id=info:pmid/&rft_oup_id=10.1155/S1073792804132662&rfr_iscdi=true |