De Rham model for string topology

Using the theory of iterated integrals, we give new short proofs of some of the main theorems of string topology including the one which relates Chas-Sullivan algebra structure on the homology of the free loop space of a simply connected closed oriented manifold to the Hochschild cohomology of the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Mathematics Research Notices 2004, Vol.2004 (55), p.2955-2981
1. Verfasser: Merkulov, S. A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2981
container_issue 55
container_start_page 2955
container_title International Mathematics Research Notices
container_volume 2004
creator Merkulov, S. A.
description Using the theory of iterated integrals, we give new short proofs of some of the main theorems of string topology including the one which relates Chas-Sullivan algebra structure on the homology of the free loop space of a simply connected closed oriented manifold to the Hochschild cohomology of the de Rham algebra.
doi_str_mv 10.1155/S1073792804132662
format Article
fullrecord <record><control><sourceid>proquest_oup_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_28242983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1155/S1073792804132662</oup_id><sourcerecordid>28242983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-a27ed00717a17bfde60ef2bb36e5430e37031d9602e19e11013205b74585113e3</originalsourceid><addsrcrecordid>eNplkM1OwzAQhC0EEqXwANzChROBXTu24yMqhYIqIfFbcbGcZlMCSR3iVKJvT6oiLpx2pPlmtBrGjhHOEaW8eETQQhueQoKCK8V32ABVqmNEo3d73dvxxt9nByF8AHBtAAfs5Iqih3dXR7XPqYoK30aha8vlIup84yu_WB-yvcJVgY5-75A9X4-fRpN4en9zO7qcxnMBposd15QDaNQOdVbkpIAKnmVCkUwEkNAgMDcKOKEhROjfBJnpRKYSUZAYstNtb9P6rxWFztZlmFNVuSX5VbA85Qk3qejBsy3oV41t2rJ27doi2M0O9t8OPR5v8TJ09P0XcO2nVT0q7WT2Zl-UxDtQM_sqfgBEx1uj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28242983</pqid></control><display><type>article</type><title>De Rham model for string topology</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Merkulov, S. A.</creator><creatorcontrib>Merkulov, S. A.</creatorcontrib><description>Using the theory of iterated integrals, we give new short proofs of some of the main theorems of string topology including the one which relates Chas-Sullivan algebra structure on the homology of the free loop space of a simply connected closed oriented manifold to the Hochschild cohomology of the de Rham algebra.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-1197</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1155/S1073792804132662</identifier><language>eng</language><publisher>Hindawi Publishing Corporation</publisher><ispartof>International Mathematics Research Notices, 2004, Vol.2004 (55), p.2955-2981</ispartof><rights>Copyright © 2004 Hindawi Publishing Corporation. All rights reserved. 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-a27ed00717a17bfde60ef2bb36e5430e37031d9602e19e11013205b74585113e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Merkulov, S. A.</creatorcontrib><title>De Rham model for string topology</title><title>International Mathematics Research Notices</title><description>Using the theory of iterated integrals, we give new short proofs of some of the main theorems of string topology including the one which relates Chas-Sullivan algebra structure on the homology of the free loop space of a simply connected closed oriented manifold to the Hochschild cohomology of the de Rham algebra.</description><issn>1073-7928</issn><issn>1687-1197</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNplkM1OwzAQhC0EEqXwANzChROBXTu24yMqhYIqIfFbcbGcZlMCSR3iVKJvT6oiLpx2pPlmtBrGjhHOEaW8eETQQhueQoKCK8V32ABVqmNEo3d73dvxxt9nByF8AHBtAAfs5Iqih3dXR7XPqYoK30aha8vlIup84yu_WB-yvcJVgY5-75A9X4-fRpN4en9zO7qcxnMBposd15QDaNQOdVbkpIAKnmVCkUwEkNAgMDcKOKEhROjfBJnpRKYSUZAYstNtb9P6rxWFztZlmFNVuSX5VbA85Qk3qejBsy3oV41t2rJ27doi2M0O9t8OPR5v8TJ09P0XcO2nVT0q7WT2Zl-UxDtQM_sqfgBEx1uj</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Merkulov, S. A.</creator><general>Hindawi Publishing Corporation</general><scope>BSCLL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2004</creationdate><title>De Rham model for string topology</title><author>Merkulov, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-a27ed00717a17bfde60ef2bb36e5430e37031d9602e19e11013205b74585113e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merkulov, S. A.</creatorcontrib><collection>Istex</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International Mathematics Research Notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merkulov, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De Rham model for string topology</atitle><jtitle>International Mathematics Research Notices</jtitle><date>2004</date><risdate>2004</risdate><volume>2004</volume><issue>55</issue><spage>2955</spage><epage>2981</epage><pages>2955-2981</pages><issn>1073-7928</issn><eissn>1687-1197</eissn><eissn>1687-0247</eissn><abstract>Using the theory of iterated integrals, we give new short proofs of some of the main theorems of string topology including the one which relates Chas-Sullivan algebra structure on the homology of the free loop space of a simply connected closed oriented manifold to the Hochschild cohomology of the de Rham algebra.</abstract><pub>Hindawi Publishing Corporation</pub><doi>10.1155/S1073792804132662</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International Mathematics Research Notices, 2004, Vol.2004 (55), p.2955-2981
issn 1073-7928
1687-1197
1687-0247
language eng
recordid cdi_proquest_miscellaneous_28242983
source Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title De Rham model for string topology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A19%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_oup_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De%20Rham%20model%20for%20string%20topology&rft.jtitle=International%20Mathematics%20Research%20Notices&rft.au=Merkulov,%20S.%20A.&rft.date=2004&rft.volume=2004&rft.issue=55&rft.spage=2955&rft.epage=2981&rft.pages=2955-2981&rft.issn=1073-7928&rft.eissn=1687-1197&rft_id=info:doi/10.1155/S1073792804132662&rft_dat=%3Cproquest_oup_p%3E28242983%3C/proquest_oup_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28242983&rft_id=info:pmid/&rft_oup_id=10.1155/S1073792804132662&rfr_iscdi=true