Digital communications channel equalization using the Kernel Adaline

For transmission of digital data over a linear channel with additive white noise, it can be shown that the optimal symbol-decision equalizer is nonlinear. The Kernel Adaline algorithm, a nonlinear generalization of Widrow's and Hoff's (1960) Adaline, is capable of learning arbitrary nonlin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2002-04, Vol.50 (4), p.571-576
Hauptverfasser: Mitchinson, B., Harrison, R.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 576
container_issue 4
container_start_page 571
container_title IEEE transactions on communications
container_volume 50
creator Mitchinson, B.
Harrison, R.F.
description For transmission of digital data over a linear channel with additive white noise, it can be shown that the optimal symbol-decision equalizer is nonlinear. The Kernel Adaline algorithm, a nonlinear generalization of Widrow's and Hoff's (1960) Adaline, is capable of learning arbitrary nonlinear decision boundaries while retaining the desirable convergence properties of the linear Adaline. This work investigates the use of the Kernel Adaline as an equalizer for such transmission channels. We show that the performance of the Kernel Adaline approaches that of the optimal symbol-decision equalizer given by Bayes theory and further, still produces useful results when the additive noise is nonwhite. A description and preliminary results of an adaptive version of the Kernel Adaline are also presented.
doi_str_mv 10.1109/26.996071
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28240751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>996071</ieee_id><sourcerecordid>28240751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8c3eebc1b0d485b5433219a9599687c3b977e28f21c75abb413464a5cce8504d3</originalsourceid><addsrcrecordid>eNqF0T1PwzAQBmALgUQpDKxMEQOCIeX8FTsjavkSlVhgthz32rpKnTZOBvj1pKRiYIDppHsfne50hJxTGFEK-S3LRnmegaIHZECl1CloqQ7JACCHNFNKH5OTGFcAIIDzAZlM_MI3tkxctV63wTvb-CrExC1tCFgmuG1t6T-_u0kbfVgkzRKTF6x36d2sCwOekqO5LSOe7euQvD_cv42f0unr4_P4bpo6nukm1Y4jFo4WMBNaFlJwzmhuc9ltrJXjRa4UMj1n1Clpi0JQLjJhpXOoJYgZH5Krfu6mrrYtxsasfXRYljZg1UbDNBOgJP0fKtAcctXB6z8hzVS3hORyRy9_0VXV1qG712gtJAVQrEM3PXJ1FWONc7Op_drWH4aC2T3IsMz0D-rsRW89Iv64ffgFj2uI-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884510072</pqid></control><display><type>article</type><title>Digital communications channel equalization using the Kernel Adaline</title><source>IEEE Electronic Library (IEL)</source><creator>Mitchinson, B. ; Harrison, R.F.</creator><creatorcontrib>Mitchinson, B. ; Harrison, R.F.</creatorcontrib><description>For transmission of digital data over a linear channel with additive white noise, it can be shown that the optimal symbol-decision equalizer is nonlinear. The Kernel Adaline algorithm, a nonlinear generalization of Widrow's and Hoff's (1960) Adaline, is capable of learning arbitrary nonlinear decision boundaries while retaining the desirable convergence properties of the linear Adaline. This work investigates the use of the Kernel Adaline as an equalizer for such transmission channels. We show that the performance of the Kernel Adaline approaches that of the optimal symbol-decision equalizer given by Bayes theory and further, still produces useful results when the additive noise is nonwhite. A description and preliminary results of an adaptive version of the Kernel Adaline are also presented.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/26.996071</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additive white noise ; Additives ; Bayesian methods ; Boundaries ; Channels ; Clustering algorithms ; Convergence ; Delay estimation ; Digital communication ; Equalizers ; Gaussian noise ; Intersymbol interference ; Kernel ; Kernels ; Nonlinearity ; Optimization</subject><ispartof>IEEE transactions on communications, 2002-04, Vol.50 (4), p.571-576</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8c3eebc1b0d485b5433219a9599687c3b977e28f21c75abb413464a5cce8504d3</citedby><cites>FETCH-LOGICAL-c368t-8c3eebc1b0d485b5433219a9599687c3b977e28f21c75abb413464a5cce8504d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/996071$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/996071$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mitchinson, B.</creatorcontrib><creatorcontrib>Harrison, R.F.</creatorcontrib><title>Digital communications channel equalization using the Kernel Adaline</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>For transmission of digital data over a linear channel with additive white noise, it can be shown that the optimal symbol-decision equalizer is nonlinear. The Kernel Adaline algorithm, a nonlinear generalization of Widrow's and Hoff's (1960) Adaline, is capable of learning arbitrary nonlinear decision boundaries while retaining the desirable convergence properties of the linear Adaline. This work investigates the use of the Kernel Adaline as an equalizer for such transmission channels. We show that the performance of the Kernel Adaline approaches that of the optimal symbol-decision equalizer given by Bayes theory and further, still produces useful results when the additive noise is nonwhite. A description and preliminary results of an adaptive version of the Kernel Adaline are also presented.</description><subject>Additive white noise</subject><subject>Additives</subject><subject>Bayesian methods</subject><subject>Boundaries</subject><subject>Channels</subject><subject>Clustering algorithms</subject><subject>Convergence</subject><subject>Delay estimation</subject><subject>Digital communication</subject><subject>Equalizers</subject><subject>Gaussian noise</subject><subject>Intersymbol interference</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Nonlinearity</subject><subject>Optimization</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0T1PwzAQBmALgUQpDKxMEQOCIeX8FTsjavkSlVhgthz32rpKnTZOBvj1pKRiYIDppHsfne50hJxTGFEK-S3LRnmegaIHZECl1CloqQ7JACCHNFNKH5OTGFcAIIDzAZlM_MI3tkxctV63wTvb-CrExC1tCFgmuG1t6T-_u0kbfVgkzRKTF6x36d2sCwOekqO5LSOe7euQvD_cv42f0unr4_P4bpo6nukm1Y4jFo4WMBNaFlJwzmhuc9ltrJXjRa4UMj1n1Clpi0JQLjJhpXOoJYgZH5Krfu6mrrYtxsasfXRYljZg1UbDNBOgJP0fKtAcctXB6z8hzVS3hORyRy9_0VXV1qG712gtJAVQrEM3PXJ1FWONc7Op_drWH4aC2T3IsMz0D-rsRW89Iv64ffgFj2uI-g</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Mitchinson, B.</creator><creator>Harrison, R.F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020401</creationdate><title>Digital communications channel equalization using the Kernel Adaline</title><author>Mitchinson, B. ; Harrison, R.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8c3eebc1b0d485b5433219a9599687c3b977e28f21c75abb413464a5cce8504d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Additive white noise</topic><topic>Additives</topic><topic>Bayesian methods</topic><topic>Boundaries</topic><topic>Channels</topic><topic>Clustering algorithms</topic><topic>Convergence</topic><topic>Delay estimation</topic><topic>Digital communication</topic><topic>Equalizers</topic><topic>Gaussian noise</topic><topic>Intersymbol interference</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Nonlinearity</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitchinson, B.</creatorcontrib><creatorcontrib>Harrison, R.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mitchinson, B.</au><au>Harrison, R.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital communications channel equalization using the Kernel Adaline</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2002-04-01</date><risdate>2002</risdate><volume>50</volume><issue>4</issue><spage>571</spage><epage>576</epage><pages>571-576</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>For transmission of digital data over a linear channel with additive white noise, it can be shown that the optimal symbol-decision equalizer is nonlinear. The Kernel Adaline algorithm, a nonlinear generalization of Widrow's and Hoff's (1960) Adaline, is capable of learning arbitrary nonlinear decision boundaries while retaining the desirable convergence properties of the linear Adaline. This work investigates the use of the Kernel Adaline as an equalizer for such transmission channels. We show that the performance of the Kernel Adaline approaches that of the optimal symbol-decision equalizer given by Bayes theory and further, still produces useful results when the additive noise is nonwhite. A description and preliminary results of an adaptive version of the Kernel Adaline are also presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/26.996071</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2002-04, Vol.50 (4), p.571-576
issn 0090-6778
1558-0857
language eng
recordid cdi_proquest_miscellaneous_28240751
source IEEE Electronic Library (IEL)
subjects Additive white noise
Additives
Bayesian methods
Boundaries
Channels
Clustering algorithms
Convergence
Delay estimation
Digital communication
Equalizers
Gaussian noise
Intersymbol interference
Kernel
Kernels
Nonlinearity
Optimization
title Digital communications channel equalization using the Kernel Adaline
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20communications%20channel%20equalization%20using%20the%20Kernel%20Adaline&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Mitchinson,%20B.&rft.date=2002-04-01&rft.volume=50&rft.issue=4&rft.spage=571&rft.epage=576&rft.pages=571-576&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/26.996071&rft_dat=%3Cproquest_RIE%3E28240751%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884510072&rft_id=info:pmid/&rft_ieee_id=996071&rfr_iscdi=true