Digital communications channel equalization using the Kernel Adaline
For transmission of digital data over a linear channel with additive white noise, it can be shown that the optimal symbol-decision equalizer is nonlinear. The Kernel Adaline algorithm, a nonlinear generalization of Widrow's and Hoff's (1960) Adaline, is capable of learning arbitrary nonlin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2002-04, Vol.50 (4), p.571-576 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 576 |
---|---|
container_issue | 4 |
container_start_page | 571 |
container_title | IEEE transactions on communications |
container_volume | 50 |
creator | Mitchinson, B. Harrison, R.F. |
description | For transmission of digital data over a linear channel with additive white noise, it can be shown that the optimal symbol-decision equalizer is nonlinear. The Kernel Adaline algorithm, a nonlinear generalization of Widrow's and Hoff's (1960) Adaline, is capable of learning arbitrary nonlinear decision boundaries while retaining the desirable convergence properties of the linear Adaline. This work investigates the use of the Kernel Adaline as an equalizer for such transmission channels. We show that the performance of the Kernel Adaline approaches that of the optimal symbol-decision equalizer given by Bayes theory and further, still produces useful results when the additive noise is nonwhite. A description and preliminary results of an adaptive version of the Kernel Adaline are also presented. |
doi_str_mv | 10.1109/26.996071 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28240751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>996071</ieee_id><sourcerecordid>28240751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8c3eebc1b0d485b5433219a9599687c3b977e28f21c75abb413464a5cce8504d3</originalsourceid><addsrcrecordid>eNqF0T1PwzAQBmALgUQpDKxMEQOCIeX8FTsjavkSlVhgthz32rpKnTZOBvj1pKRiYIDppHsfne50hJxTGFEK-S3LRnmegaIHZECl1CloqQ7JACCHNFNKH5OTGFcAIIDzAZlM_MI3tkxctV63wTvb-CrExC1tCFgmuG1t6T-_u0kbfVgkzRKTF6x36d2sCwOekqO5LSOe7euQvD_cv42f0unr4_P4bpo6nukm1Y4jFo4WMBNaFlJwzmhuc9ltrJXjRa4UMj1n1Clpi0JQLjJhpXOoJYgZH5Krfu6mrrYtxsasfXRYljZg1UbDNBOgJP0fKtAcctXB6z8hzVS3hORyRy9_0VXV1qG712gtJAVQrEM3PXJ1FWONc7Op_drWH4aC2T3IsMz0D-rsRW89Iv64ffgFj2uI-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884510072</pqid></control><display><type>article</type><title>Digital communications channel equalization using the Kernel Adaline</title><source>IEEE Electronic Library (IEL)</source><creator>Mitchinson, B. ; Harrison, R.F.</creator><creatorcontrib>Mitchinson, B. ; Harrison, R.F.</creatorcontrib><description>For transmission of digital data over a linear channel with additive white noise, it can be shown that the optimal symbol-decision equalizer is nonlinear. The Kernel Adaline algorithm, a nonlinear generalization of Widrow's and Hoff's (1960) Adaline, is capable of learning arbitrary nonlinear decision boundaries while retaining the desirable convergence properties of the linear Adaline. This work investigates the use of the Kernel Adaline as an equalizer for such transmission channels. We show that the performance of the Kernel Adaline approaches that of the optimal symbol-decision equalizer given by Bayes theory and further, still produces useful results when the additive noise is nonwhite. A description and preliminary results of an adaptive version of the Kernel Adaline are also presented.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/26.996071</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additive white noise ; Additives ; Bayesian methods ; Boundaries ; Channels ; Clustering algorithms ; Convergence ; Delay estimation ; Digital communication ; Equalizers ; Gaussian noise ; Intersymbol interference ; Kernel ; Kernels ; Nonlinearity ; Optimization</subject><ispartof>IEEE transactions on communications, 2002-04, Vol.50 (4), p.571-576</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8c3eebc1b0d485b5433219a9599687c3b977e28f21c75abb413464a5cce8504d3</citedby><cites>FETCH-LOGICAL-c368t-8c3eebc1b0d485b5433219a9599687c3b977e28f21c75abb413464a5cce8504d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/996071$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/996071$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mitchinson, B.</creatorcontrib><creatorcontrib>Harrison, R.F.</creatorcontrib><title>Digital communications channel equalization using the Kernel Adaline</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>For transmission of digital data over a linear channel with additive white noise, it can be shown that the optimal symbol-decision equalizer is nonlinear. The Kernel Adaline algorithm, a nonlinear generalization of Widrow's and Hoff's (1960) Adaline, is capable of learning arbitrary nonlinear decision boundaries while retaining the desirable convergence properties of the linear Adaline. This work investigates the use of the Kernel Adaline as an equalizer for such transmission channels. We show that the performance of the Kernel Adaline approaches that of the optimal symbol-decision equalizer given by Bayes theory and further, still produces useful results when the additive noise is nonwhite. A description and preliminary results of an adaptive version of the Kernel Adaline are also presented.</description><subject>Additive white noise</subject><subject>Additives</subject><subject>Bayesian methods</subject><subject>Boundaries</subject><subject>Channels</subject><subject>Clustering algorithms</subject><subject>Convergence</subject><subject>Delay estimation</subject><subject>Digital communication</subject><subject>Equalizers</subject><subject>Gaussian noise</subject><subject>Intersymbol interference</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Nonlinearity</subject><subject>Optimization</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0T1PwzAQBmALgUQpDKxMEQOCIeX8FTsjavkSlVhgthz32rpKnTZOBvj1pKRiYIDppHsfne50hJxTGFEK-S3LRnmegaIHZECl1CloqQ7JACCHNFNKH5OTGFcAIIDzAZlM_MI3tkxctV63wTvb-CrExC1tCFgmuG1t6T-_u0kbfVgkzRKTF6x36d2sCwOekqO5LSOe7euQvD_cv42f0unr4_P4bpo6nukm1Y4jFo4WMBNaFlJwzmhuc9ltrJXjRa4UMj1n1Clpi0JQLjJhpXOoJYgZH5Krfu6mrrYtxsasfXRYljZg1UbDNBOgJP0fKtAcctXB6z8hzVS3hORyRy9_0VXV1qG712gtJAVQrEM3PXJ1FWONc7Op_drWH4aC2T3IsMz0D-rsRW89Iv64ffgFj2uI-g</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Mitchinson, B.</creator><creator>Harrison, R.F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020401</creationdate><title>Digital communications channel equalization using the Kernel Adaline</title><author>Mitchinson, B. ; Harrison, R.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8c3eebc1b0d485b5433219a9599687c3b977e28f21c75abb413464a5cce8504d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Additive white noise</topic><topic>Additives</topic><topic>Bayesian methods</topic><topic>Boundaries</topic><topic>Channels</topic><topic>Clustering algorithms</topic><topic>Convergence</topic><topic>Delay estimation</topic><topic>Digital communication</topic><topic>Equalizers</topic><topic>Gaussian noise</topic><topic>Intersymbol interference</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Nonlinearity</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitchinson, B.</creatorcontrib><creatorcontrib>Harrison, R.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mitchinson, B.</au><au>Harrison, R.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital communications channel equalization using the Kernel Adaline</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2002-04-01</date><risdate>2002</risdate><volume>50</volume><issue>4</issue><spage>571</spage><epage>576</epage><pages>571-576</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>For transmission of digital data over a linear channel with additive white noise, it can be shown that the optimal symbol-decision equalizer is nonlinear. The Kernel Adaline algorithm, a nonlinear generalization of Widrow's and Hoff's (1960) Adaline, is capable of learning arbitrary nonlinear decision boundaries while retaining the desirable convergence properties of the linear Adaline. This work investigates the use of the Kernel Adaline as an equalizer for such transmission channels. We show that the performance of the Kernel Adaline approaches that of the optimal symbol-decision equalizer given by Bayes theory and further, still produces useful results when the additive noise is nonwhite. A description and preliminary results of an adaptive version of the Kernel Adaline are also presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/26.996071</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2002-04, Vol.50 (4), p.571-576 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_proquest_miscellaneous_28240751 |
source | IEEE Electronic Library (IEL) |
subjects | Additive white noise Additives Bayesian methods Boundaries Channels Clustering algorithms Convergence Delay estimation Digital communication Equalizers Gaussian noise Intersymbol interference Kernel Kernels Nonlinearity Optimization |
title | Digital communications channel equalization using the Kernel Adaline |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20communications%20channel%20equalization%20using%20the%20Kernel%20Adaline&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Mitchinson,%20B.&rft.date=2002-04-01&rft.volume=50&rft.issue=4&rft.spage=571&rft.epage=576&rft.pages=571-576&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/26.996071&rft_dat=%3Cproquest_RIE%3E28240751%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884510072&rft_id=info:pmid/&rft_ieee_id=996071&rfr_iscdi=true |