3D Printed Chondrogenic Functionalized PGS Bioactive Scaffold for Cartilage Regeneration

Tissue engineering is emerging as a promising approach for cartilage regeneration and repair. Endowing scaffolds with cartilaginous bioactivity to obtain bionic microenvironment and regulating the matching of scaffold degradation and regeneration play a crucial role in cartilage regeneration. Poly(g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2023-10, Vol.12 (27), p.e2301006-e2301006
Hauptverfasser: Wang, Sinan, Luo, Bin, Bai, Baoshuai, Wang, Qianyi, Chen, Hongying, Tan, Xiaoyan, Tang, Zhengya, Shen, Sisi, Zhou, Hengxing, You, Zhengwei, Zhou, Guangdong, Lei, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2301006
container_issue 27
container_start_page e2301006
container_title Advanced healthcare materials
container_volume 12
creator Wang, Sinan
Luo, Bin
Bai, Baoshuai
Wang, Qianyi
Chen, Hongying
Tan, Xiaoyan
Tang, Zhengya
Shen, Sisi
Zhou, Hengxing
You, Zhengwei
Zhou, Guangdong
Lei, Dong
description Tissue engineering is emerging as a promising approach for cartilage regeneration and repair. Endowing scaffolds with cartilaginous bioactivity to obtain bionic microenvironment and regulating the matching of scaffold degradation and regeneration play a crucial role in cartilage regeneration. Poly(glycerol sebacate) (PGS) is a representative thermosetting bioelastomer known for its elasticity, biodegradability, and biocompatibility and is widely used in tissue engineering. However, the modification and drug loading of the PGS scaffold is still a key challenge due to its high temperature curing conditions and limited reactive groups, which seriously hinders its further functional application. Here, a simple versatile new strategy of super swelling-absorption and cross-linked networks locking is presented to successfully create the 3D printed PGS-CS/Gel scaffold for the first time based on FDA-approved PGS, gelatin (Gel) and chondroitin sulfate (CS). The PGS-CS/Gel scaffold exhibits the desirable synergistic properties of well-organized hierarchical structures, excellent elasticity, improved hydrophilicity, and cartilaginous bioactivity, which can promote the adhesion, proliferation, and migration of chondrocytes. Importantly, the rate of cartilage regeneration can be well-matched with degradation of PGS-CS/Gel scaffold, and achieve uniform and mature cartilage tissue without scaffold residual. The bioactive scaffold can successfully repair cartilage in a rabbit trochlear groove defect model indicating a promising prospect of clinical transformation.
doi_str_mv 10.1002/adhm.202301006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2823992177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823992177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-9e97022704d1ec5f872ae798f2fd80a09dc72e84bb9109f6b63303614f6851f83</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbKm9epSAFy-pu7PJfhy12ioULFbBW9gku21Kkq2bRNBf74bWHpzLfD3vwLwIXRI8IRjDrco31QQwUOxbdoKGQCSEwGJ5eqwjPEDjptliHywmTJBzNKAcBIu4GKIP-hAsXVG3Og-mG1vnzq51XWTBrKuztrC1Kosfv1vOV8F9YZWffelglSljbJkHxrpgqlxblGqtg1fttdqpXneBzowqGz0-5BF6nz2-TZ_Cxcv8eXq3CDMKtA2llhwDcBzlRGexERyU5lIYMLnACss846BFlKaSYGlYyijFlJHIMBETI-gI3ezv7pz97HTTJlXRZLosVa1t1yQggEoJhHOPXv9Dt7Zz_sOeEgCExAx7arKnMmebxmmT7FxRKfedEJz0tie97cnRdi-4Opzt0krnR_zPZPoLZgV7uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882211560</pqid></control><display><type>article</type><title>3D Printed Chondrogenic Functionalized PGS Bioactive Scaffold for Cartilage Regeneration</title><source>Access via Wiley Online Library</source><creator>Wang, Sinan ; Luo, Bin ; Bai, Baoshuai ; Wang, Qianyi ; Chen, Hongying ; Tan, Xiaoyan ; Tang, Zhengya ; Shen, Sisi ; Zhou, Hengxing ; You, Zhengwei ; Zhou, Guangdong ; Lei, Dong</creator><creatorcontrib>Wang, Sinan ; Luo, Bin ; Bai, Baoshuai ; Wang, Qianyi ; Chen, Hongying ; Tan, Xiaoyan ; Tang, Zhengya ; Shen, Sisi ; Zhou, Hengxing ; You, Zhengwei ; Zhou, Guangdong ; Lei, Dong</creatorcontrib><description>Tissue engineering is emerging as a promising approach for cartilage regeneration and repair. Endowing scaffolds with cartilaginous bioactivity to obtain bionic microenvironment and regulating the matching of scaffold degradation and regeneration play a crucial role in cartilage regeneration. Poly(glycerol sebacate) (PGS) is a representative thermosetting bioelastomer known for its elasticity, biodegradability, and biocompatibility and is widely used in tissue engineering. However, the modification and drug loading of the PGS scaffold is still a key challenge due to its high temperature curing conditions and limited reactive groups, which seriously hinders its further functional application. Here, a simple versatile new strategy of super swelling-absorption and cross-linked networks locking is presented to successfully create the 3D printed PGS-CS/Gel scaffold for the first time based on FDA-approved PGS, gelatin (Gel) and chondroitin sulfate (CS). The PGS-CS/Gel scaffold exhibits the desirable synergistic properties of well-organized hierarchical structures, excellent elasticity, improved hydrophilicity, and cartilaginous bioactivity, which can promote the adhesion, proliferation, and migration of chondrocytes. Importantly, the rate of cartilage regeneration can be well-matched with degradation of PGS-CS/Gel scaffold, and achieve uniform and mature cartilage tissue without scaffold residual. The bioactive scaffold can successfully repair cartilage in a rabbit trochlear groove defect model indicating a promising prospect of clinical transformation.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202301006</identifier><identifier>PMID: 37286478</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; Biodegradability ; Biological activity ; Bionics ; Cartilage ; Chondrocytes ; Chondroitin sulfate ; Degradation ; Elasticity ; Gelatin ; Glycerol ; Grooves ; High temperature ; Microenvironments ; Regeneration ; Scaffolds ; Three dimensional printing ; Tissue engineering</subject><ispartof>Advanced healthcare materials, 2023-10, Vol.12 (27), p.e2301006-e2301006</ispartof><rights>2023 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-9e97022704d1ec5f872ae798f2fd80a09dc72e84bb9109f6b63303614f6851f83</citedby><cites>FETCH-LOGICAL-c323t-9e97022704d1ec5f872ae798f2fd80a09dc72e84bb9109f6b63303614f6851f83</cites><orcidid>0000-0003-1038-1321 ; 0000-0003-3264-9835 ; 0000-0003-2488-2733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37286478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Sinan</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><creatorcontrib>Bai, Baoshuai</creatorcontrib><creatorcontrib>Wang, Qianyi</creatorcontrib><creatorcontrib>Chen, Hongying</creatorcontrib><creatorcontrib>Tan, Xiaoyan</creatorcontrib><creatorcontrib>Tang, Zhengya</creatorcontrib><creatorcontrib>Shen, Sisi</creatorcontrib><creatorcontrib>Zhou, Hengxing</creatorcontrib><creatorcontrib>You, Zhengwei</creatorcontrib><creatorcontrib>Zhou, Guangdong</creatorcontrib><creatorcontrib>Lei, Dong</creatorcontrib><title>3D Printed Chondrogenic Functionalized PGS Bioactive Scaffold for Cartilage Regeneration</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Tissue engineering is emerging as a promising approach for cartilage regeneration and repair. Endowing scaffolds with cartilaginous bioactivity to obtain bionic microenvironment and regulating the matching of scaffold degradation and regeneration play a crucial role in cartilage regeneration. Poly(glycerol sebacate) (PGS) is a representative thermosetting bioelastomer known for its elasticity, biodegradability, and biocompatibility and is widely used in tissue engineering. However, the modification and drug loading of the PGS scaffold is still a key challenge due to its high temperature curing conditions and limited reactive groups, which seriously hinders its further functional application. Here, a simple versatile new strategy of super swelling-absorption and cross-linked networks locking is presented to successfully create the 3D printed PGS-CS/Gel scaffold for the first time based on FDA-approved PGS, gelatin (Gel) and chondroitin sulfate (CS). The PGS-CS/Gel scaffold exhibits the desirable synergistic properties of well-organized hierarchical structures, excellent elasticity, improved hydrophilicity, and cartilaginous bioactivity, which can promote the adhesion, proliferation, and migration of chondrocytes. Importantly, the rate of cartilage regeneration can be well-matched with degradation of PGS-CS/Gel scaffold, and achieve uniform and mature cartilage tissue without scaffold residual. The bioactive scaffold can successfully repair cartilage in a rabbit trochlear groove defect model indicating a promising prospect of clinical transformation.</description><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biological activity</subject><subject>Bionics</subject><subject>Cartilage</subject><subject>Chondrocytes</subject><subject>Chondroitin sulfate</subject><subject>Degradation</subject><subject>Elasticity</subject><subject>Gelatin</subject><subject>Glycerol</subject><subject>Grooves</subject><subject>High temperature</subject><subject>Microenvironments</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbKm9epSAFy-pu7PJfhy12ioULFbBW9gku21Kkq2bRNBf74bWHpzLfD3vwLwIXRI8IRjDrco31QQwUOxbdoKGQCSEwGJ5eqwjPEDjptliHywmTJBzNKAcBIu4GKIP-hAsXVG3Og-mG1vnzq51XWTBrKuztrC1Kosfv1vOV8F9YZWffelglSljbJkHxrpgqlxblGqtg1fttdqpXneBzowqGz0-5BF6nz2-TZ_Cxcv8eXq3CDMKtA2llhwDcBzlRGexERyU5lIYMLnACss846BFlKaSYGlYyijFlJHIMBETI-gI3ezv7pz97HTTJlXRZLosVa1t1yQggEoJhHOPXv9Dt7Zz_sOeEgCExAx7arKnMmebxmmT7FxRKfedEJz0tie97cnRdi-4Opzt0krnR_zPZPoLZgV7uw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Wang, Sinan</creator><creator>Luo, Bin</creator><creator>Bai, Baoshuai</creator><creator>Wang, Qianyi</creator><creator>Chen, Hongying</creator><creator>Tan, Xiaoyan</creator><creator>Tang, Zhengya</creator><creator>Shen, Sisi</creator><creator>Zhou, Hengxing</creator><creator>You, Zhengwei</creator><creator>Zhou, Guangdong</creator><creator>Lei, Dong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1038-1321</orcidid><orcidid>https://orcid.org/0000-0003-3264-9835</orcidid><orcidid>https://orcid.org/0000-0003-2488-2733</orcidid></search><sort><creationdate>20231001</creationdate><title>3D Printed Chondrogenic Functionalized PGS Bioactive Scaffold for Cartilage Regeneration</title><author>Wang, Sinan ; Luo, Bin ; Bai, Baoshuai ; Wang, Qianyi ; Chen, Hongying ; Tan, Xiaoyan ; Tang, Zhengya ; Shen, Sisi ; Zhou, Hengxing ; You, Zhengwei ; Zhou, Guangdong ; Lei, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-9e97022704d1ec5f872ae798f2fd80a09dc72e84bb9109f6b63303614f6851f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biological activity</topic><topic>Bionics</topic><topic>Cartilage</topic><topic>Chondrocytes</topic><topic>Chondroitin sulfate</topic><topic>Degradation</topic><topic>Elasticity</topic><topic>Gelatin</topic><topic>Glycerol</topic><topic>Grooves</topic><topic>High temperature</topic><topic>Microenvironments</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Sinan</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><creatorcontrib>Bai, Baoshuai</creatorcontrib><creatorcontrib>Wang, Qianyi</creatorcontrib><creatorcontrib>Chen, Hongying</creatorcontrib><creatorcontrib>Tan, Xiaoyan</creatorcontrib><creatorcontrib>Tang, Zhengya</creatorcontrib><creatorcontrib>Shen, Sisi</creatorcontrib><creatorcontrib>Zhou, Hengxing</creatorcontrib><creatorcontrib>You, Zhengwei</creatorcontrib><creatorcontrib>Zhou, Guangdong</creatorcontrib><creatorcontrib>Lei, Dong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Sinan</au><au>Luo, Bin</au><au>Bai, Baoshuai</au><au>Wang, Qianyi</au><au>Chen, Hongying</au><au>Tan, Xiaoyan</au><au>Tang, Zhengya</au><au>Shen, Sisi</au><au>Zhou, Hengxing</au><au>You, Zhengwei</au><au>Zhou, Guangdong</au><au>Lei, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printed Chondrogenic Functionalized PGS Bioactive Scaffold for Cartilage Regeneration</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>12</volume><issue>27</issue><spage>e2301006</spage><epage>e2301006</epage><pages>e2301006-e2301006</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Tissue engineering is emerging as a promising approach for cartilage regeneration and repair. Endowing scaffolds with cartilaginous bioactivity to obtain bionic microenvironment and regulating the matching of scaffold degradation and regeneration play a crucial role in cartilage regeneration. Poly(glycerol sebacate) (PGS) is a representative thermosetting bioelastomer known for its elasticity, biodegradability, and biocompatibility and is widely used in tissue engineering. However, the modification and drug loading of the PGS scaffold is still a key challenge due to its high temperature curing conditions and limited reactive groups, which seriously hinders its further functional application. Here, a simple versatile new strategy of super swelling-absorption and cross-linked networks locking is presented to successfully create the 3D printed PGS-CS/Gel scaffold for the first time based on FDA-approved PGS, gelatin (Gel) and chondroitin sulfate (CS). The PGS-CS/Gel scaffold exhibits the desirable synergistic properties of well-organized hierarchical structures, excellent elasticity, improved hydrophilicity, and cartilaginous bioactivity, which can promote the adhesion, proliferation, and migration of chondrocytes. Importantly, the rate of cartilage regeneration can be well-matched with degradation of PGS-CS/Gel scaffold, and achieve uniform and mature cartilage tissue without scaffold residual. The bioactive scaffold can successfully repair cartilage in a rabbit trochlear groove defect model indicating a promising prospect of clinical transformation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37286478</pmid><doi>10.1002/adhm.202301006</doi><orcidid>https://orcid.org/0000-0003-1038-1321</orcidid><orcidid>https://orcid.org/0000-0003-3264-9835</orcidid><orcidid>https://orcid.org/0000-0003-2488-2733</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2023-10, Vol.12 (27), p.e2301006-e2301006
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_miscellaneous_2823992177
source Access via Wiley Online Library
subjects Biocompatibility
Biodegradability
Biological activity
Bionics
Cartilage
Chondrocytes
Chondroitin sulfate
Degradation
Elasticity
Gelatin
Glycerol
Grooves
High temperature
Microenvironments
Regeneration
Scaffolds
Three dimensional printing
Tissue engineering
title 3D Printed Chondrogenic Functionalized PGS Bioactive Scaffold for Cartilage Regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T23%3A07%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printed%20Chondrogenic%20Functionalized%20PGS%20Bioactive%20Scaffold%20for%20Cartilage%20Regeneration&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Wang,%20Sinan&rft.date=2023-10-01&rft.volume=12&rft.issue=27&rft.spage=e2301006&rft.epage=e2301006&rft.pages=e2301006-e2301006&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202301006&rft_dat=%3Cproquest_cross%3E2823992177%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882211560&rft_id=info:pmid/37286478&rfr_iscdi=true