3D Printed Chondrogenic Functionalized PGS Bioactive Scaffold for Cartilage Regeneration
Tissue engineering is emerging as a promising approach for cartilage regeneration and repair. Endowing scaffolds with cartilaginous bioactivity to obtain bionic microenvironment and regulating the matching of scaffold degradation and regeneration play a crucial role in cartilage regeneration. Poly(g...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2023-10, Vol.12 (27), p.e2301006-e2301006 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2301006 |
---|---|
container_issue | 27 |
container_start_page | e2301006 |
container_title | Advanced healthcare materials |
container_volume | 12 |
creator | Wang, Sinan Luo, Bin Bai, Baoshuai Wang, Qianyi Chen, Hongying Tan, Xiaoyan Tang, Zhengya Shen, Sisi Zhou, Hengxing You, Zhengwei Zhou, Guangdong Lei, Dong |
description | Tissue engineering is emerging as a promising approach for cartilage regeneration and repair. Endowing scaffolds with cartilaginous bioactivity to obtain bionic microenvironment and regulating the matching of scaffold degradation and regeneration play a crucial role in cartilage regeneration. Poly(glycerol sebacate) (PGS) is a representative thermosetting bioelastomer known for its elasticity, biodegradability, and biocompatibility and is widely used in tissue engineering. However, the modification and drug loading of the PGS scaffold is still a key challenge due to its high temperature curing conditions and limited reactive groups, which seriously hinders its further functional application. Here, a simple versatile new strategy of super swelling-absorption and cross-linked networks locking is presented to successfully create the 3D printed PGS-CS/Gel scaffold for the first time based on FDA-approved PGS, gelatin (Gel) and chondroitin sulfate (CS). The PGS-CS/Gel scaffold exhibits the desirable synergistic properties of well-organized hierarchical structures, excellent elasticity, improved hydrophilicity, and cartilaginous bioactivity, which can promote the adhesion, proliferation, and migration of chondrocytes. Importantly, the rate of cartilage regeneration can be well-matched with degradation of PGS-CS/Gel scaffold, and achieve uniform and mature cartilage tissue without scaffold residual. The bioactive scaffold can successfully repair cartilage in a rabbit trochlear groove defect model indicating a promising prospect of clinical transformation. |
doi_str_mv | 10.1002/adhm.202301006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2823992177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823992177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-9e97022704d1ec5f872ae798f2fd80a09dc72e84bb9109f6b63303614f6851f83</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbKm9epSAFy-pu7PJfhy12ioULFbBW9gku21Kkq2bRNBf74bWHpzLfD3vwLwIXRI8IRjDrco31QQwUOxbdoKGQCSEwGJ5eqwjPEDjptliHywmTJBzNKAcBIu4GKIP-hAsXVG3Og-mG1vnzq51XWTBrKuztrC1Kosfv1vOV8F9YZWffelglSljbJkHxrpgqlxblGqtg1fttdqpXneBzowqGz0-5BF6nz2-TZ_Cxcv8eXq3CDMKtA2llhwDcBzlRGexERyU5lIYMLnACss846BFlKaSYGlYyijFlJHIMBETI-gI3ezv7pz97HTTJlXRZLosVa1t1yQggEoJhHOPXv9Dt7Zz_sOeEgCExAx7arKnMmebxmmT7FxRKfedEJz0tie97cnRdi-4Opzt0krnR_zPZPoLZgV7uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882211560</pqid></control><display><type>article</type><title>3D Printed Chondrogenic Functionalized PGS Bioactive Scaffold for Cartilage Regeneration</title><source>Access via Wiley Online Library</source><creator>Wang, Sinan ; Luo, Bin ; Bai, Baoshuai ; Wang, Qianyi ; Chen, Hongying ; Tan, Xiaoyan ; Tang, Zhengya ; Shen, Sisi ; Zhou, Hengxing ; You, Zhengwei ; Zhou, Guangdong ; Lei, Dong</creator><creatorcontrib>Wang, Sinan ; Luo, Bin ; Bai, Baoshuai ; Wang, Qianyi ; Chen, Hongying ; Tan, Xiaoyan ; Tang, Zhengya ; Shen, Sisi ; Zhou, Hengxing ; You, Zhengwei ; Zhou, Guangdong ; Lei, Dong</creatorcontrib><description>Tissue engineering is emerging as a promising approach for cartilage regeneration and repair. Endowing scaffolds with cartilaginous bioactivity to obtain bionic microenvironment and regulating the matching of scaffold degradation and regeneration play a crucial role in cartilage regeneration. Poly(glycerol sebacate) (PGS) is a representative thermosetting bioelastomer known for its elasticity, biodegradability, and biocompatibility and is widely used in tissue engineering. However, the modification and drug loading of the PGS scaffold is still a key challenge due to its high temperature curing conditions and limited reactive groups, which seriously hinders its further functional application. Here, a simple versatile new strategy of super swelling-absorption and cross-linked networks locking is presented to successfully create the 3D printed PGS-CS/Gel scaffold for the first time based on FDA-approved PGS, gelatin (Gel) and chondroitin sulfate (CS). The PGS-CS/Gel scaffold exhibits the desirable synergistic properties of well-organized hierarchical structures, excellent elasticity, improved hydrophilicity, and cartilaginous bioactivity, which can promote the adhesion, proliferation, and migration of chondrocytes. Importantly, the rate of cartilage regeneration can be well-matched with degradation of PGS-CS/Gel scaffold, and achieve uniform and mature cartilage tissue without scaffold residual. The bioactive scaffold can successfully repair cartilage in a rabbit trochlear groove defect model indicating a promising prospect of clinical transformation.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202301006</identifier><identifier>PMID: 37286478</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; Biodegradability ; Biological activity ; Bionics ; Cartilage ; Chondrocytes ; Chondroitin sulfate ; Degradation ; Elasticity ; Gelatin ; Glycerol ; Grooves ; High temperature ; Microenvironments ; Regeneration ; Scaffolds ; Three dimensional printing ; Tissue engineering</subject><ispartof>Advanced healthcare materials, 2023-10, Vol.12 (27), p.e2301006-e2301006</ispartof><rights>2023 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-9e97022704d1ec5f872ae798f2fd80a09dc72e84bb9109f6b63303614f6851f83</citedby><cites>FETCH-LOGICAL-c323t-9e97022704d1ec5f872ae798f2fd80a09dc72e84bb9109f6b63303614f6851f83</cites><orcidid>0000-0003-1038-1321 ; 0000-0003-3264-9835 ; 0000-0003-2488-2733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37286478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Sinan</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><creatorcontrib>Bai, Baoshuai</creatorcontrib><creatorcontrib>Wang, Qianyi</creatorcontrib><creatorcontrib>Chen, Hongying</creatorcontrib><creatorcontrib>Tan, Xiaoyan</creatorcontrib><creatorcontrib>Tang, Zhengya</creatorcontrib><creatorcontrib>Shen, Sisi</creatorcontrib><creatorcontrib>Zhou, Hengxing</creatorcontrib><creatorcontrib>You, Zhengwei</creatorcontrib><creatorcontrib>Zhou, Guangdong</creatorcontrib><creatorcontrib>Lei, Dong</creatorcontrib><title>3D Printed Chondrogenic Functionalized PGS Bioactive Scaffold for Cartilage Regeneration</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Tissue engineering is emerging as a promising approach for cartilage regeneration and repair. Endowing scaffolds with cartilaginous bioactivity to obtain bionic microenvironment and regulating the matching of scaffold degradation and regeneration play a crucial role in cartilage regeneration. Poly(glycerol sebacate) (PGS) is a representative thermosetting bioelastomer known for its elasticity, biodegradability, and biocompatibility and is widely used in tissue engineering. However, the modification and drug loading of the PGS scaffold is still a key challenge due to its high temperature curing conditions and limited reactive groups, which seriously hinders its further functional application. Here, a simple versatile new strategy of super swelling-absorption and cross-linked networks locking is presented to successfully create the 3D printed PGS-CS/Gel scaffold for the first time based on FDA-approved PGS, gelatin (Gel) and chondroitin sulfate (CS). The PGS-CS/Gel scaffold exhibits the desirable synergistic properties of well-organized hierarchical structures, excellent elasticity, improved hydrophilicity, and cartilaginous bioactivity, which can promote the adhesion, proliferation, and migration of chondrocytes. Importantly, the rate of cartilage regeneration can be well-matched with degradation of PGS-CS/Gel scaffold, and achieve uniform and mature cartilage tissue without scaffold residual. The bioactive scaffold can successfully repair cartilage in a rabbit trochlear groove defect model indicating a promising prospect of clinical transformation.</description><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biological activity</subject><subject>Bionics</subject><subject>Cartilage</subject><subject>Chondrocytes</subject><subject>Chondroitin sulfate</subject><subject>Degradation</subject><subject>Elasticity</subject><subject>Gelatin</subject><subject>Glycerol</subject><subject>Grooves</subject><subject>High temperature</subject><subject>Microenvironments</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbKm9epSAFy-pu7PJfhy12ioULFbBW9gku21Kkq2bRNBf74bWHpzLfD3vwLwIXRI8IRjDrco31QQwUOxbdoKGQCSEwGJ5eqwjPEDjptliHywmTJBzNKAcBIu4GKIP-hAsXVG3Og-mG1vnzq51XWTBrKuztrC1Kosfv1vOV8F9YZWffelglSljbJkHxrpgqlxblGqtg1fttdqpXneBzowqGz0-5BF6nz2-TZ_Cxcv8eXq3CDMKtA2llhwDcBzlRGexERyU5lIYMLnACss846BFlKaSYGlYyijFlJHIMBETI-gI3ezv7pz97HTTJlXRZLosVa1t1yQggEoJhHOPXv9Dt7Zz_sOeEgCExAx7arKnMmebxmmT7FxRKfedEJz0tie97cnRdi-4Opzt0krnR_zPZPoLZgV7uw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Wang, Sinan</creator><creator>Luo, Bin</creator><creator>Bai, Baoshuai</creator><creator>Wang, Qianyi</creator><creator>Chen, Hongying</creator><creator>Tan, Xiaoyan</creator><creator>Tang, Zhengya</creator><creator>Shen, Sisi</creator><creator>Zhou, Hengxing</creator><creator>You, Zhengwei</creator><creator>Zhou, Guangdong</creator><creator>Lei, Dong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1038-1321</orcidid><orcidid>https://orcid.org/0000-0003-3264-9835</orcidid><orcidid>https://orcid.org/0000-0003-2488-2733</orcidid></search><sort><creationdate>20231001</creationdate><title>3D Printed Chondrogenic Functionalized PGS Bioactive Scaffold for Cartilage Regeneration</title><author>Wang, Sinan ; Luo, Bin ; Bai, Baoshuai ; Wang, Qianyi ; Chen, Hongying ; Tan, Xiaoyan ; Tang, Zhengya ; Shen, Sisi ; Zhou, Hengxing ; You, Zhengwei ; Zhou, Guangdong ; Lei, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-9e97022704d1ec5f872ae798f2fd80a09dc72e84bb9109f6b63303614f6851f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biological activity</topic><topic>Bionics</topic><topic>Cartilage</topic><topic>Chondrocytes</topic><topic>Chondroitin sulfate</topic><topic>Degradation</topic><topic>Elasticity</topic><topic>Gelatin</topic><topic>Glycerol</topic><topic>Grooves</topic><topic>High temperature</topic><topic>Microenvironments</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Sinan</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><creatorcontrib>Bai, Baoshuai</creatorcontrib><creatorcontrib>Wang, Qianyi</creatorcontrib><creatorcontrib>Chen, Hongying</creatorcontrib><creatorcontrib>Tan, Xiaoyan</creatorcontrib><creatorcontrib>Tang, Zhengya</creatorcontrib><creatorcontrib>Shen, Sisi</creatorcontrib><creatorcontrib>Zhou, Hengxing</creatorcontrib><creatorcontrib>You, Zhengwei</creatorcontrib><creatorcontrib>Zhou, Guangdong</creatorcontrib><creatorcontrib>Lei, Dong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Sinan</au><au>Luo, Bin</au><au>Bai, Baoshuai</au><au>Wang, Qianyi</au><au>Chen, Hongying</au><au>Tan, Xiaoyan</au><au>Tang, Zhengya</au><au>Shen, Sisi</au><au>Zhou, Hengxing</au><au>You, Zhengwei</au><au>Zhou, Guangdong</au><au>Lei, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printed Chondrogenic Functionalized PGS Bioactive Scaffold for Cartilage Regeneration</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>12</volume><issue>27</issue><spage>e2301006</spage><epage>e2301006</epage><pages>e2301006-e2301006</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Tissue engineering is emerging as a promising approach for cartilage regeneration and repair. Endowing scaffolds with cartilaginous bioactivity to obtain bionic microenvironment and regulating the matching of scaffold degradation and regeneration play a crucial role in cartilage regeneration. Poly(glycerol sebacate) (PGS) is a representative thermosetting bioelastomer known for its elasticity, biodegradability, and biocompatibility and is widely used in tissue engineering. However, the modification and drug loading of the PGS scaffold is still a key challenge due to its high temperature curing conditions and limited reactive groups, which seriously hinders its further functional application. Here, a simple versatile new strategy of super swelling-absorption and cross-linked networks locking is presented to successfully create the 3D printed PGS-CS/Gel scaffold for the first time based on FDA-approved PGS, gelatin (Gel) and chondroitin sulfate (CS). The PGS-CS/Gel scaffold exhibits the desirable synergistic properties of well-organized hierarchical structures, excellent elasticity, improved hydrophilicity, and cartilaginous bioactivity, which can promote the adhesion, proliferation, and migration of chondrocytes. Importantly, the rate of cartilage regeneration can be well-matched with degradation of PGS-CS/Gel scaffold, and achieve uniform and mature cartilage tissue without scaffold residual. The bioactive scaffold can successfully repair cartilage in a rabbit trochlear groove defect model indicating a promising prospect of clinical transformation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37286478</pmid><doi>10.1002/adhm.202301006</doi><orcidid>https://orcid.org/0000-0003-1038-1321</orcidid><orcidid>https://orcid.org/0000-0003-3264-9835</orcidid><orcidid>https://orcid.org/0000-0003-2488-2733</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2023-10, Vol.12 (27), p.e2301006-e2301006 |
issn | 2192-2640 2192-2659 |
language | eng |
recordid | cdi_proquest_miscellaneous_2823992177 |
source | Access via Wiley Online Library |
subjects | Biocompatibility Biodegradability Biological activity Bionics Cartilage Chondrocytes Chondroitin sulfate Degradation Elasticity Gelatin Glycerol Grooves High temperature Microenvironments Regeneration Scaffolds Three dimensional printing Tissue engineering |
title | 3D Printed Chondrogenic Functionalized PGS Bioactive Scaffold for Cartilage Regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T23%3A07%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printed%20Chondrogenic%20Functionalized%20PGS%20Bioactive%20Scaffold%20for%20Cartilage%20Regeneration&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Wang,%20Sinan&rft.date=2023-10-01&rft.volume=12&rft.issue=27&rft.spage=e2301006&rft.epage=e2301006&rft.pages=e2301006-e2301006&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202301006&rft_dat=%3Cproquest_cross%3E2823992177%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882211560&rft_id=info:pmid/37286478&rfr_iscdi=true |