The use of artificial intelligence to identify subjects with a positive FOBT predicted to be non-compliant with both colonoscopy and harbor cancer

Subjects with a positive Fecal Occult Blood Test (FOBT) that are non-compliant with colonoscopy are at increased risk for colorectal cancer (CRC). Yet, in clinical practice, many remain non-compliant. To evaluate whether machine learning models (ML) can identify subjects with a positive FOBT predict...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digestive and liver disease 2023-09, Vol.55 (9), p.1253-1258
Hauptverfasser: Konikoff, Tom, Flugelman, Anath, Comanesther, Doron, Cohen, Arnon Dov, Gingold-Belfer, Rachel, Boltin, Doron, Golan, Maya Aharoni, Eizenstein, Sapir, Dotan, Iris, Perry, Hagit, Levi, Zohar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1258
container_issue 9
container_start_page 1253
container_title Digestive and liver disease
container_volume 55
creator Konikoff, Tom
Flugelman, Anath
Comanesther, Doron
Cohen, Arnon Dov
Gingold-Belfer, Rachel
Boltin, Doron
Golan, Maya Aharoni
Eizenstein, Sapir
Dotan, Iris
Perry, Hagit
Levi, Zohar
description Subjects with a positive Fecal Occult Blood Test (FOBT) that are non-compliant with colonoscopy are at increased risk for colorectal cancer (CRC). Yet, in clinical practice, many remain non-compliant. To evaluate whether machine learning models (ML) can identify subjects with a positive FOBT predicted to be both non-compliant with colonoscopy within six months and harbor CRC (defined as the "target population"). We trained and validated ML models based on extensive administrative and laboratory data about subjects with a positive FOBT between 2011 and 2013 within Clalit Health that were followed for cancer diagnosis up to 2018. Out of 25,219 included subjects, 9,979(39.6%) were non-compliant with colonoscopy, and 202(0.8%) were both non-compliant and harbored cancer. Using ML, we reduced the number of subjects needed to engage from 25,219 to either 971 (3.85%) to identify 25.8%(52/202) of the target population, reducing the number needed to treat (NNT) from 124.8 to 19.4 or to 4,010(15,8%) to identify 55.0%(52/202) of the target population, NNT = 39.7. Machine learning technology may help healthcare organizations to identify subjects with a positive FOBT predicted to be both non-compliant with colonoscopy and harbor cancer from the first day of a positive FOBT with improved efficiency.
doi_str_mv 10.1016/j.dld.2023.04.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2823991983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1590865823006084</els_id><sourcerecordid>2823991983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-aa2736566419a5562c5417cc1edf9902bca0bc9627158b2f90017ef8e3a61dd13</originalsourceid><addsrcrecordid>eNp9UcFu3CAURFWjJk37Ab1UHHuxC9hgUE9tlDSVIuWyPSMMz11WXnABJ9rfyBeH1aY95vJ4EjPzNDMIfaKkpYSKr7vWza5lhHUt6VvChjfogspBNh0X7G3duSKNFFyeo_c57whhVHDyDp13A5Oi5_QCPW22gNcMOE7YpOInb72ZsQ8F5tn_gWABl4i9g1A_Dziv4w5syfjRly02eInZF_8A-Ob-xwYvCZy3BdyRMwIOMTQ27pfZm1BOlDHWYeMcQ8w2LgdsgsNbk8aYsDX1XPqAziYzZ_j48l6i3zfXm6vb5u7-56-r73eNZYyUxhg2dIIL0VNleDVseU8Haym4SSnCRmvIaJVgA-VyZJMihA4wSeiMoM7R7hJ9OekuKf5dIRe999lW2yZAXLNmknVKUSW7CqUnqE0x5wSTXpLfm3TQlOhjFXqnaxX6WIUmva5VVM7nF_l13IP7z_iXfQV8OwGgmnzwkHS2_hi486lGrF30r8g_A_L3m2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823991983</pqid></control><display><type>article</type><title>The use of artificial intelligence to identify subjects with a positive FOBT predicted to be non-compliant with both colonoscopy and harbor cancer</title><source>Elsevier ScienceDirect Journals</source><creator>Konikoff, Tom ; Flugelman, Anath ; Comanesther, Doron ; Cohen, Arnon Dov ; Gingold-Belfer, Rachel ; Boltin, Doron ; Golan, Maya Aharoni ; Eizenstein, Sapir ; Dotan, Iris ; Perry, Hagit ; Levi, Zohar</creator><creatorcontrib>Konikoff, Tom ; Flugelman, Anath ; Comanesther, Doron ; Cohen, Arnon Dov ; Gingold-Belfer, Rachel ; Boltin, Doron ; Golan, Maya Aharoni ; Eizenstein, Sapir ; Dotan, Iris ; Perry, Hagit ; Levi, Zohar</creatorcontrib><description>Subjects with a positive Fecal Occult Blood Test (FOBT) that are non-compliant with colonoscopy are at increased risk for colorectal cancer (CRC). Yet, in clinical practice, many remain non-compliant. To evaluate whether machine learning models (ML) can identify subjects with a positive FOBT predicted to be both non-compliant with colonoscopy within six months and harbor CRC (defined as the "target population"). We trained and validated ML models based on extensive administrative and laboratory data about subjects with a positive FOBT between 2011 and 2013 within Clalit Health that were followed for cancer diagnosis up to 2018. Out of 25,219 included subjects, 9,979(39.6%) were non-compliant with colonoscopy, and 202(0.8%) were both non-compliant and harbored cancer. Using ML, we reduced the number of subjects needed to engage from 25,219 to either 971 (3.85%) to identify 25.8%(52/202) of the target population, reducing the number needed to treat (NNT) from 124.8 to 19.4 or to 4,010(15,8%) to identify 55.0%(52/202) of the target population, NNT = 39.7. Machine learning technology may help healthcare organizations to identify subjects with a positive FOBT predicted to be both non-compliant with colonoscopy and harbor cancer from the first day of a positive FOBT with improved efficiency.</description><identifier>ISSN: 1590-8658</identifier><identifier>EISSN: 1878-3562</identifier><identifier>DOI: 10.1016/j.dld.2023.04.027</identifier><identifier>PMID: 37286451</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Artificial intelligence ; Colorectal cancer ; Fecal occult blood test ; Machine learning ; Screening</subject><ispartof>Digestive and liver disease, 2023-09, Vol.55 (9), p.1253-1258</ispartof><rights>2023 Editrice Gastroenterologica Italiana S.r.l.</rights><rights>Copyright © 2023 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-aa2736566419a5562c5417cc1edf9902bca0bc9627158b2f90017ef8e3a61dd13</cites><orcidid>0000-0003-2456-8891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dld.2023.04.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37286451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Konikoff, Tom</creatorcontrib><creatorcontrib>Flugelman, Anath</creatorcontrib><creatorcontrib>Comanesther, Doron</creatorcontrib><creatorcontrib>Cohen, Arnon Dov</creatorcontrib><creatorcontrib>Gingold-Belfer, Rachel</creatorcontrib><creatorcontrib>Boltin, Doron</creatorcontrib><creatorcontrib>Golan, Maya Aharoni</creatorcontrib><creatorcontrib>Eizenstein, Sapir</creatorcontrib><creatorcontrib>Dotan, Iris</creatorcontrib><creatorcontrib>Perry, Hagit</creatorcontrib><creatorcontrib>Levi, Zohar</creatorcontrib><title>The use of artificial intelligence to identify subjects with a positive FOBT predicted to be non-compliant with both colonoscopy and harbor cancer</title><title>Digestive and liver disease</title><addtitle>Dig Liver Dis</addtitle><description>Subjects with a positive Fecal Occult Blood Test (FOBT) that are non-compliant with colonoscopy are at increased risk for colorectal cancer (CRC). Yet, in clinical practice, many remain non-compliant. To evaluate whether machine learning models (ML) can identify subjects with a positive FOBT predicted to be both non-compliant with colonoscopy within six months and harbor CRC (defined as the "target population"). We trained and validated ML models based on extensive administrative and laboratory data about subjects with a positive FOBT between 2011 and 2013 within Clalit Health that were followed for cancer diagnosis up to 2018. Out of 25,219 included subjects, 9,979(39.6%) were non-compliant with colonoscopy, and 202(0.8%) were both non-compliant and harbored cancer. Using ML, we reduced the number of subjects needed to engage from 25,219 to either 971 (3.85%) to identify 25.8%(52/202) of the target population, reducing the number needed to treat (NNT) from 124.8 to 19.4 or to 4,010(15,8%) to identify 55.0%(52/202) of the target population, NNT = 39.7. Machine learning technology may help healthcare organizations to identify subjects with a positive FOBT predicted to be both non-compliant with colonoscopy and harbor cancer from the first day of a positive FOBT with improved efficiency.</description><subject>Artificial intelligence</subject><subject>Colorectal cancer</subject><subject>Fecal occult blood test</subject><subject>Machine learning</subject><subject>Screening</subject><issn>1590-8658</issn><issn>1878-3562</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UcFu3CAURFWjJk37Ab1UHHuxC9hgUE9tlDSVIuWyPSMMz11WXnABJ9rfyBeH1aY95vJ4EjPzNDMIfaKkpYSKr7vWza5lhHUt6VvChjfogspBNh0X7G3duSKNFFyeo_c57whhVHDyDp13A5Oi5_QCPW22gNcMOE7YpOInb72ZsQ8F5tn_gWABl4i9g1A_Dziv4w5syfjRly02eInZF_8A-Ob-xwYvCZy3BdyRMwIOMTQ27pfZm1BOlDHWYeMcQ8w2LgdsgsNbk8aYsDX1XPqAziYzZ_j48l6i3zfXm6vb5u7-56-r73eNZYyUxhg2dIIL0VNleDVseU8Haym4SSnCRmvIaJVgA-VyZJMihA4wSeiMoM7R7hJ9OekuKf5dIRe999lW2yZAXLNmknVKUSW7CqUnqE0x5wSTXpLfm3TQlOhjFXqnaxX6WIUmva5VVM7nF_l13IP7z_iXfQV8OwGgmnzwkHS2_hi486lGrF30r8g_A_L3m2U</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Konikoff, Tom</creator><creator>Flugelman, Anath</creator><creator>Comanesther, Doron</creator><creator>Cohen, Arnon Dov</creator><creator>Gingold-Belfer, Rachel</creator><creator>Boltin, Doron</creator><creator>Golan, Maya Aharoni</creator><creator>Eizenstein, Sapir</creator><creator>Dotan, Iris</creator><creator>Perry, Hagit</creator><creator>Levi, Zohar</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2456-8891</orcidid></search><sort><creationdate>20230901</creationdate><title>The use of artificial intelligence to identify subjects with a positive FOBT predicted to be non-compliant with both colonoscopy and harbor cancer</title><author>Konikoff, Tom ; Flugelman, Anath ; Comanesther, Doron ; Cohen, Arnon Dov ; Gingold-Belfer, Rachel ; Boltin, Doron ; Golan, Maya Aharoni ; Eizenstein, Sapir ; Dotan, Iris ; Perry, Hagit ; Levi, Zohar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-aa2736566419a5562c5417cc1edf9902bca0bc9627158b2f90017ef8e3a61dd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Colorectal cancer</topic><topic>Fecal occult blood test</topic><topic>Machine learning</topic><topic>Screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konikoff, Tom</creatorcontrib><creatorcontrib>Flugelman, Anath</creatorcontrib><creatorcontrib>Comanesther, Doron</creatorcontrib><creatorcontrib>Cohen, Arnon Dov</creatorcontrib><creatorcontrib>Gingold-Belfer, Rachel</creatorcontrib><creatorcontrib>Boltin, Doron</creatorcontrib><creatorcontrib>Golan, Maya Aharoni</creatorcontrib><creatorcontrib>Eizenstein, Sapir</creatorcontrib><creatorcontrib>Dotan, Iris</creatorcontrib><creatorcontrib>Perry, Hagit</creatorcontrib><creatorcontrib>Levi, Zohar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Digestive and liver disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konikoff, Tom</au><au>Flugelman, Anath</au><au>Comanesther, Doron</au><au>Cohen, Arnon Dov</au><au>Gingold-Belfer, Rachel</au><au>Boltin, Doron</au><au>Golan, Maya Aharoni</au><au>Eizenstein, Sapir</au><au>Dotan, Iris</au><au>Perry, Hagit</au><au>Levi, Zohar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of artificial intelligence to identify subjects with a positive FOBT predicted to be non-compliant with both colonoscopy and harbor cancer</atitle><jtitle>Digestive and liver disease</jtitle><addtitle>Dig Liver Dis</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>55</volume><issue>9</issue><spage>1253</spage><epage>1258</epage><pages>1253-1258</pages><issn>1590-8658</issn><eissn>1878-3562</eissn><abstract>Subjects with a positive Fecal Occult Blood Test (FOBT) that are non-compliant with colonoscopy are at increased risk for colorectal cancer (CRC). Yet, in clinical practice, many remain non-compliant. To evaluate whether machine learning models (ML) can identify subjects with a positive FOBT predicted to be both non-compliant with colonoscopy within six months and harbor CRC (defined as the "target population"). We trained and validated ML models based on extensive administrative and laboratory data about subjects with a positive FOBT between 2011 and 2013 within Clalit Health that were followed for cancer diagnosis up to 2018. Out of 25,219 included subjects, 9,979(39.6%) were non-compliant with colonoscopy, and 202(0.8%) were both non-compliant and harbored cancer. Using ML, we reduced the number of subjects needed to engage from 25,219 to either 971 (3.85%) to identify 25.8%(52/202) of the target population, reducing the number needed to treat (NNT) from 124.8 to 19.4 or to 4,010(15,8%) to identify 55.0%(52/202) of the target population, NNT = 39.7. Machine learning technology may help healthcare organizations to identify subjects with a positive FOBT predicted to be both non-compliant with colonoscopy and harbor cancer from the first day of a positive FOBT with improved efficiency.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>37286451</pmid><doi>10.1016/j.dld.2023.04.027</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2456-8891</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1590-8658
ispartof Digestive and liver disease, 2023-09, Vol.55 (9), p.1253-1258
issn 1590-8658
1878-3562
language eng
recordid cdi_proquest_miscellaneous_2823991983
source Elsevier ScienceDirect Journals
subjects Artificial intelligence
Colorectal cancer
Fecal occult blood test
Machine learning
Screening
title The use of artificial intelligence to identify subjects with a positive FOBT predicted to be non-compliant with both colonoscopy and harbor cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20artificial%20intelligence%20to%20identify%20subjects%20with%20a%20positive%20FOBT%20predicted%20to%20be%20non-compliant%20with%20both%20colonoscopy%20and%20harbor%20cancer&rft.jtitle=Digestive%20and%20liver%20disease&rft.au=Konikoff,%20Tom&rft.date=2023-09-01&rft.volume=55&rft.issue=9&rft.spage=1253&rft.epage=1258&rft.pages=1253-1258&rft.issn=1590-8658&rft.eissn=1878-3562&rft_id=info:doi/10.1016/j.dld.2023.04.027&rft_dat=%3Cproquest_cross%3E2823991983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823991983&rft_id=info:pmid/37286451&rft_els_id=S1590865823006084&rfr_iscdi=true