Molecular Insights into the Interaction Mechanism Underlying the Aggregation of Humic Acid and Its Adsorption on Clay Minerals

Humic acid (HA) is ubiquitous in both terrestrial and aquatic environments, and understanding the molecular interaction mechanisms underlying its aggregation and adsorption is of vital significance. However, the intermolecular interactions of HA–HA and HA–clay mineral systems in complex aqueous envi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2023-06, Vol.57 (24), p.9032-9042
Hauptverfasser: Lu, Qiuyi, Wang, Jingyi, Wang, Zhoujie, Xie, Lei, Liu, Qi, Zeng, Hongbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9042
container_issue 24
container_start_page 9032
container_title Environmental science & technology
container_volume 57
creator Lu, Qiuyi
Wang, Jingyi
Wang, Zhoujie
Xie, Lei
Liu, Qi
Zeng, Hongbo
description Humic acid (HA) is ubiquitous in both terrestrial and aquatic environments, and understanding the molecular interaction mechanisms underlying its aggregation and adsorption is of vital significance. However, the intermolecular interactions of HA–HA and HA–clay mineral systems in complex aqueous environments remain elusive. Herein, the interactions of HA with various model surfaces (i.e., HA, mica, and talc) were quantitatively measured in aqueous media at the nanoscale using an atomic force microscope. The HA–HA interaction was found to be purely repulsive during surface approach, consistent with free energy calculation; during retraction, pH-dependent adhesion was observed due to the protonation/deprotonation of HA that influences the formation of hydrogen bonds. Different from the mica case, hydrophobic interaction was detected for the HA–talc system at pH 5.8, contributing to the stronger HA–talc adhesion, as also evidenced by adsorption results. Notably, HA–mica adhesion strongly depended on the loading force and contact time, most likely because of the short-range and time-dependent interfacial hydrogen bonding interaction under confinement, as compared to the dominant hydrophobic interaction for the HA–talc case. This study provides quantitative insights into the fundamental molecular interaction mechanisms underlying the aggregation of HA and its adsorption on clay minerals of varying hydrophobicity in environmental processes.
doi_str_mv 10.1021/acs.est.3c01493
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2823989008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153840884</sourcerecordid><originalsourceid>FETCH-LOGICAL-a394t-bbb90a3bfd4fb5883aa8405d5aa317a3a8248ef84a499e4d996f7694b05e8f263</originalsourceid><addsrcrecordid>eNqF0c9r2zAUB3AxVtas23m3IdhlMJzql5OnYwjbGmjopYXdzLMsOyq2lEn2IZf-7VOarIfB6OmB-LyvkL6EfOJszpng12jS3KZxLg3jSss3ZMZLwYoSSv6WzBjjstBy8euSvE_pkTEmJIN35FIuBWghYUaetqG3Zuox0o1PrtuNiTo_BjrubD4ZbUQzuuDp1podepcG-uAbG_uD890zWnVdtB0-o9DSm2lwhq6Mayj6hm5y3qpJIe5PwNN1jwe6dT4n9-kDuWjzsB_P84o8_Ph-v74pbu9-btar2wKlVmNR17VmKOu2UW1dAkhEUKxsSkTJlygRhALbgkKltVWN1ot2udCqZqWFVizkFfl6yt3H8HvKP1YNLhnb9-htmFIleSlzIoB6lQoQUoNmDDL98g99DFP0-SFHpRVw0Dyr65MyMaQUbVvtoxswHirOqmOLVW6xOm6fW8wbn8-5Uz3Y5sX_rS2Dbydw3Hy5839xfwCGOqg7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829481891</pqid></control><display><type>article</type><title>Molecular Insights into the Interaction Mechanism Underlying the Aggregation of Humic Acid and Its Adsorption on Clay Minerals</title><source>MEDLINE</source><source>ACS Publications</source><creator>Lu, Qiuyi ; Wang, Jingyi ; Wang, Zhoujie ; Xie, Lei ; Liu, Qi ; Zeng, Hongbo</creator><creatorcontrib>Lu, Qiuyi ; Wang, Jingyi ; Wang, Zhoujie ; Xie, Lei ; Liu, Qi ; Zeng, Hongbo</creatorcontrib><description>Humic acid (HA) is ubiquitous in both terrestrial and aquatic environments, and understanding the molecular interaction mechanisms underlying its aggregation and adsorption is of vital significance. However, the intermolecular interactions of HA–HA and HA–clay mineral systems in complex aqueous environments remain elusive. Herein, the interactions of HA with various model surfaces (i.e., HA, mica, and talc) were quantitatively measured in aqueous media at the nanoscale using an atomic force microscope. The HA–HA interaction was found to be purely repulsive during surface approach, consistent with free energy calculation; during retraction, pH-dependent adhesion was observed due to the protonation/deprotonation of HA that influences the formation of hydrogen bonds. Different from the mica case, hydrophobic interaction was detected for the HA–talc system at pH 5.8, contributing to the stronger HA–talc adhesion, as also evidenced by adsorption results. Notably, HA–mica adhesion strongly depended on the loading force and contact time, most likely because of the short-range and time-dependent interfacial hydrogen bonding interaction under confinement, as compared to the dominant hydrophobic interaction for the HA–talc case. This study provides quantitative insights into the fundamental molecular interaction mechanisms underlying the aggregation of HA and its adsorption on clay minerals of varying hydrophobicity in environmental processes.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c01493</identifier><identifier>PMID: 37289238</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adhesion ; Adsorption ; Aquatic environment ; Aqueous environments ; Aqueous solutions ; Atomic force microscopy ; Clay ; Clay minerals ; deprotonation ; environmental science ; Free energy ; Gibbs free energy ; Humic acids ; Humic Substances - analysis ; hydrogen ; Hydrogen bonding ; Hydrogen bonds ; hydrophobic bonding ; Hydrophobicity ; Hydroxyapatite ; Mica ; Minerals ; Minerals - chemistry ; Molecular interactions ; Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants ; pH effects ; Protonation ; Surface chemistry ; Talc ; technology ; Time dependence</subject><ispartof>Environmental science &amp; technology, 2023-06, Vol.57 (24), p.9032-9042</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Jun 20, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a394t-bbb90a3bfd4fb5883aa8405d5aa317a3a8248ef84a499e4d996f7694b05e8f263</citedby><cites>FETCH-LOGICAL-a394t-bbb90a3bfd4fb5883aa8405d5aa317a3a8248ef84a499e4d996f7694b05e8f263</cites><orcidid>0000-0003-3520-4815 ; 0000-0002-1432-5979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.3c01493$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.3c01493$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37289238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Qiuyi</creatorcontrib><creatorcontrib>Wang, Jingyi</creatorcontrib><creatorcontrib>Wang, Zhoujie</creatorcontrib><creatorcontrib>Xie, Lei</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Zeng, Hongbo</creatorcontrib><title>Molecular Insights into the Interaction Mechanism Underlying the Aggregation of Humic Acid and Its Adsorption on Clay Minerals</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Humic acid (HA) is ubiquitous in both terrestrial and aquatic environments, and understanding the molecular interaction mechanisms underlying its aggregation and adsorption is of vital significance. However, the intermolecular interactions of HA–HA and HA–clay mineral systems in complex aqueous environments remain elusive. Herein, the interactions of HA with various model surfaces (i.e., HA, mica, and talc) were quantitatively measured in aqueous media at the nanoscale using an atomic force microscope. The HA–HA interaction was found to be purely repulsive during surface approach, consistent with free energy calculation; during retraction, pH-dependent adhesion was observed due to the protonation/deprotonation of HA that influences the formation of hydrogen bonds. Different from the mica case, hydrophobic interaction was detected for the HA–talc system at pH 5.8, contributing to the stronger HA–talc adhesion, as also evidenced by adsorption results. Notably, HA–mica adhesion strongly depended on the loading force and contact time, most likely because of the short-range and time-dependent interfacial hydrogen bonding interaction under confinement, as compared to the dominant hydrophobic interaction for the HA–talc case. This study provides quantitative insights into the fundamental molecular interaction mechanisms underlying the aggregation of HA and its adsorption on clay minerals of varying hydrophobicity in environmental processes.</description><subject>Adhesion</subject><subject>Adsorption</subject><subject>Aquatic environment</subject><subject>Aqueous environments</subject><subject>Aqueous solutions</subject><subject>Atomic force microscopy</subject><subject>Clay</subject><subject>Clay minerals</subject><subject>deprotonation</subject><subject>environmental science</subject><subject>Free energy</subject><subject>Gibbs free energy</subject><subject>Humic acids</subject><subject>Humic Substances - analysis</subject><subject>hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>hydrophobic bonding</subject><subject>Hydrophobicity</subject><subject>Hydroxyapatite</subject><subject>Mica</subject><subject>Minerals</subject><subject>Minerals - chemistry</subject><subject>Molecular interactions</subject><subject>Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants</subject><subject>pH effects</subject><subject>Protonation</subject><subject>Surface chemistry</subject><subject>Talc</subject><subject>technology</subject><subject>Time dependence</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9r2zAUB3AxVtas23m3IdhlMJzql5OnYwjbGmjopYXdzLMsOyq2lEn2IZf-7VOarIfB6OmB-LyvkL6EfOJszpng12jS3KZxLg3jSss3ZMZLwYoSSv6WzBjjstBy8euSvE_pkTEmJIN35FIuBWghYUaetqG3Zuox0o1PrtuNiTo_BjrubD4ZbUQzuuDp1podepcG-uAbG_uD890zWnVdtB0-o9DSm2lwhq6Mayj6hm5y3qpJIe5PwNN1jwe6dT4n9-kDuWjzsB_P84o8_Ph-v74pbu9-btar2wKlVmNR17VmKOu2UW1dAkhEUKxsSkTJlygRhALbgkKltVWN1ot2udCqZqWFVizkFfl6yt3H8HvKP1YNLhnb9-htmFIleSlzIoB6lQoQUoNmDDL98g99DFP0-SFHpRVw0Dyr65MyMaQUbVvtoxswHirOqmOLVW6xOm6fW8wbn8-5Uz3Y5sX_rS2Dbydw3Hy5839xfwCGOqg7</recordid><startdate>20230620</startdate><enddate>20230620</enddate><creator>Lu, Qiuyi</creator><creator>Wang, Jingyi</creator><creator>Wang, Zhoujie</creator><creator>Xie, Lei</creator><creator>Liu, Qi</creator><creator>Zeng, Hongbo</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3520-4815</orcidid><orcidid>https://orcid.org/0000-0002-1432-5979</orcidid></search><sort><creationdate>20230620</creationdate><title>Molecular Insights into the Interaction Mechanism Underlying the Aggregation of Humic Acid and Its Adsorption on Clay Minerals</title><author>Lu, Qiuyi ; Wang, Jingyi ; Wang, Zhoujie ; Xie, Lei ; Liu, Qi ; Zeng, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a394t-bbb90a3bfd4fb5883aa8405d5aa317a3a8248ef84a499e4d996f7694b05e8f263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adhesion</topic><topic>Adsorption</topic><topic>Aquatic environment</topic><topic>Aqueous environments</topic><topic>Aqueous solutions</topic><topic>Atomic force microscopy</topic><topic>Clay</topic><topic>Clay minerals</topic><topic>deprotonation</topic><topic>environmental science</topic><topic>Free energy</topic><topic>Gibbs free energy</topic><topic>Humic acids</topic><topic>Humic Substances - analysis</topic><topic>hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>hydrophobic bonding</topic><topic>Hydrophobicity</topic><topic>Hydroxyapatite</topic><topic>Mica</topic><topic>Minerals</topic><topic>Minerals - chemistry</topic><topic>Molecular interactions</topic><topic>Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants</topic><topic>pH effects</topic><topic>Protonation</topic><topic>Surface chemistry</topic><topic>Talc</topic><topic>technology</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Qiuyi</creatorcontrib><creatorcontrib>Wang, Jingyi</creatorcontrib><creatorcontrib>Wang, Zhoujie</creatorcontrib><creatorcontrib>Xie, Lei</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Zeng, Hongbo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Qiuyi</au><au>Wang, Jingyi</au><au>Wang, Zhoujie</au><au>Xie, Lei</au><au>Liu, Qi</au><au>Zeng, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Insights into the Interaction Mechanism Underlying the Aggregation of Humic Acid and Its Adsorption on Clay Minerals</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2023-06-20</date><risdate>2023</risdate><volume>57</volume><issue>24</issue><spage>9032</spage><epage>9042</epage><pages>9032-9042</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Humic acid (HA) is ubiquitous in both terrestrial and aquatic environments, and understanding the molecular interaction mechanisms underlying its aggregation and adsorption is of vital significance. However, the intermolecular interactions of HA–HA and HA–clay mineral systems in complex aqueous environments remain elusive. Herein, the interactions of HA with various model surfaces (i.e., HA, mica, and talc) were quantitatively measured in aqueous media at the nanoscale using an atomic force microscope. The HA–HA interaction was found to be purely repulsive during surface approach, consistent with free energy calculation; during retraction, pH-dependent adhesion was observed due to the protonation/deprotonation of HA that influences the formation of hydrogen bonds. Different from the mica case, hydrophobic interaction was detected for the HA–talc system at pH 5.8, contributing to the stronger HA–talc adhesion, as also evidenced by adsorption results. Notably, HA–mica adhesion strongly depended on the loading force and contact time, most likely because of the short-range and time-dependent interfacial hydrogen bonding interaction under confinement, as compared to the dominant hydrophobic interaction for the HA–talc case. This study provides quantitative insights into the fundamental molecular interaction mechanisms underlying the aggregation of HA and its adsorption on clay minerals of varying hydrophobicity in environmental processes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37289238</pmid><doi>10.1021/acs.est.3c01493</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3520-4815</orcidid><orcidid>https://orcid.org/0000-0002-1432-5979</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2023-06, Vol.57 (24), p.9032-9042
issn 0013-936X
1520-5851
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2823989008
source MEDLINE; ACS Publications
subjects Adhesion
Adsorption
Aquatic environment
Aqueous environments
Aqueous solutions
Atomic force microscopy
Clay
Clay minerals
deprotonation
environmental science
Free energy
Gibbs free energy
Humic acids
Humic Substances - analysis
hydrogen
Hydrogen bonding
Hydrogen bonds
hydrophobic bonding
Hydrophobicity
Hydroxyapatite
Mica
Minerals
Minerals - chemistry
Molecular interactions
Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants
pH effects
Protonation
Surface chemistry
Talc
technology
Time dependence
title Molecular Insights into the Interaction Mechanism Underlying the Aggregation of Humic Acid and Its Adsorption on Clay Minerals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Insights%20into%20the%20Interaction%20Mechanism%20Underlying%20the%20Aggregation%20of%20Humic%20Acid%20and%20Its%20Adsorption%20on%20Clay%20Minerals&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Lu,%20Qiuyi&rft.date=2023-06-20&rft.volume=57&rft.issue=24&rft.spage=9032&rft.epage=9042&rft.pages=9032-9042&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c01493&rft_dat=%3Cproquest_cross%3E3153840884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829481891&rft_id=info:pmid/37289238&rfr_iscdi=true