Model for In Situ Perchloroethene Dechlorination via Membrane-Delivered Hydrogen

A one-dimensional contaminant fate and transport model was developed to simulate reductive dechlorination of perchloroethene (PCE) in an anaerobic aquifer supplied with hydrogen via a gas-permeable membrane curtain. The model predicted that providing hydrogen at transfer rates equal to the reducing-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental engineering (New York, N.Y.) N.Y.), 2004-11, Vol.130 (11), p.1367-1381
Hauptverfasser: Clapp, Lee W, Semmens, Michael J, Novak, Paige J, Hozalski, Raymond M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1381
container_issue 11
container_start_page 1367
container_title Journal of environmental engineering (New York, N.Y.)
container_volume 130
creator Clapp, Lee W
Semmens, Michael J
Novak, Paige J
Hozalski, Raymond M
description A one-dimensional contaminant fate and transport model was developed to simulate reductive dechlorination of perchloroethene (PCE) in an anaerobic aquifer supplied with hydrogen via a gas-permeable membrane curtain. The model predicted that providing hydrogen at transfer rates equal to the reducing-equivalent demand associated with the groundwater PCE flux would mineralize 75% of the PCE-bound chlorine to chloride and, furthermore, that 0.55 moles of chloride would be released per mole of hydrogen transferred. Supplying higher hydrogen transfer rates was predicted to result in slightly lower dechlorination efficiencies and significantly lower dechlorination yields due to greater methanogenic growth and concomitant displacement of dehalorespirers away from the hydrogen-supply membranes. The model also predicted that high hydrogen-utilizing biomass concentrations would develop near the membranes, resulting in minimal hydrogen dispersal. Model predictions were qualitatively similar to results attained in experimental soil column studies; however, incorporation of homoacetogenesis and acetate utilization by dehalorespirers, as well as hydrogen production via fermentation of biomass decay products, would have improved agreement between model simulations and experimentally observed dechlorination performance.
doi_str_mv 10.1061/(ASCE)0733-9372(2004)130:11(1367)
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28236392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>308289596</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-43dba8b348fef866e52ff34aff70829c049f537dc533c22dc0175b27cacf52f23</originalsourceid><addsrcrecordid>eNqNkclOwzAURS0EEmX4h2xA7SLwPCROWIHaMgkEErBhY7nOMwSlMdhpJf4ehzIswRv7SUf3XR0TMqJwQCGnh8OTu_F0BJLztOSSDRmAGFEOR5QOKc_laI0MaCl4KgsJ62TwQ26SrRBeAKjISzkgt9euwiaxzicXbXJXd4vkFr15bpx32D1ji8kEP8e61V3t2mRZ6-Qa5zOvW0wn2NRL9Fgl5--Vd0_Y7pANq5uAu1_3Nnk4nd6Pz9Orm7OL8clVqoWQXSp4NdPFjIvCoi3yHDNmLRfaWgkFKw2I0mZcVibj3DBWGaAymzFptLERZXyb7K9yX717W2Do1LwOBpsm1nKLoFjBeM7Lf4DABGRlGcHjFWi8C8GjVa--nmv_riioXrpSvXTVq1S9StVLV1G6olT10mPE3tcuHYxubHRk6vCbk8dVICByjysuYqhe3MK30ZW6vJlOJw8QP4dDfyjtn7n8HlYt_irxAWHHmyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20240599</pqid></control><display><type>article</type><title>Model for In Situ Perchloroethene Dechlorination via Membrane-Delivered Hydrogen</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><source>Business Source Complete</source><creator>Clapp, Lee W ; Semmens, Michael J ; Novak, Paige J ; Hozalski, Raymond M</creator><creatorcontrib>Clapp, Lee W ; Semmens, Michael J ; Novak, Paige J ; Hozalski, Raymond M</creatorcontrib><description>A one-dimensional contaminant fate and transport model was developed to simulate reductive dechlorination of perchloroethene (PCE) in an anaerobic aquifer supplied with hydrogen via a gas-permeable membrane curtain. The model predicted that providing hydrogen at transfer rates equal to the reducing-equivalent demand associated with the groundwater PCE flux would mineralize 75% of the PCE-bound chlorine to chloride and, furthermore, that 0.55 moles of chloride would be released per mole of hydrogen transferred. Supplying higher hydrogen transfer rates was predicted to result in slightly lower dechlorination efficiencies and significantly lower dechlorination yields due to greater methanogenic growth and concomitant displacement of dehalorespirers away from the hydrogen-supply membranes. The model also predicted that high hydrogen-utilizing biomass concentrations would develop near the membranes, resulting in minimal hydrogen dispersal. Model predictions were qualitatively similar to results attained in experimental soil column studies; however, incorporation of homoacetogenesis and acetate utilization by dehalorespirers, as well as hydrogen production via fermentation of biomass decay products, would have improved agreement between model simulations and experimentally observed dechlorination performance.</description><identifier>ISSN: 0733-9372</identifier><identifier>EISSN: 1943-7870</identifier><identifier>DOI: 10.1061/(ASCE)0733-9372(2004)130:11(1367)</identifier><identifier>CODEN: JOEEDU</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>Acetates ; Acetic acid ; Applied sciences ; Aquifers ; Biomass ; Chlorides ; Chlorine ; Computer simulation ; Dechlorination ; Environmental engineering ; Exact sciences and technology ; Membranes ; Pollution ; Soil (material) ; TECHNICAL PAPERS</subject><ispartof>Journal of environmental engineering (New York, N.Y.), 2004-11, Vol.130 (11), p.1367-1381</ispartof><rights>Copyright © 2004 ASCE</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-43dba8b348fef866e52ff34aff70829c049f537dc533c22dc0175b27cacf52f23</citedby><cites>FETCH-LOGICAL-a447t-43dba8b348fef866e52ff34aff70829c049f537dc533c22dc0175b27cacf52f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9372(2004)130:11(1367)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9372(2004)130:11(1367)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76193,76201</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16240040$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Clapp, Lee W</creatorcontrib><creatorcontrib>Semmens, Michael J</creatorcontrib><creatorcontrib>Novak, Paige J</creatorcontrib><creatorcontrib>Hozalski, Raymond M</creatorcontrib><title>Model for In Situ Perchloroethene Dechlorination via Membrane-Delivered Hydrogen</title><title>Journal of environmental engineering (New York, N.Y.)</title><description>A one-dimensional contaminant fate and transport model was developed to simulate reductive dechlorination of perchloroethene (PCE) in an anaerobic aquifer supplied with hydrogen via a gas-permeable membrane curtain. The model predicted that providing hydrogen at transfer rates equal to the reducing-equivalent demand associated with the groundwater PCE flux would mineralize 75% of the PCE-bound chlorine to chloride and, furthermore, that 0.55 moles of chloride would be released per mole of hydrogen transferred. Supplying higher hydrogen transfer rates was predicted to result in slightly lower dechlorination efficiencies and significantly lower dechlorination yields due to greater methanogenic growth and concomitant displacement of dehalorespirers away from the hydrogen-supply membranes. The model also predicted that high hydrogen-utilizing biomass concentrations would develop near the membranes, resulting in minimal hydrogen dispersal. Model predictions were qualitatively similar to results attained in experimental soil column studies; however, incorporation of homoacetogenesis and acetate utilization by dehalorespirers, as well as hydrogen production via fermentation of biomass decay products, would have improved agreement between model simulations and experimentally observed dechlorination performance.</description><subject>Acetates</subject><subject>Acetic acid</subject><subject>Applied sciences</subject><subject>Aquifers</subject><subject>Biomass</subject><subject>Chlorides</subject><subject>Chlorine</subject><subject>Computer simulation</subject><subject>Dechlorination</subject><subject>Environmental engineering</subject><subject>Exact sciences and technology</subject><subject>Membranes</subject><subject>Pollution</subject><subject>Soil (material)</subject><subject>TECHNICAL PAPERS</subject><issn>0733-9372</issn><issn>1943-7870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkclOwzAURS0EEmX4h2xA7SLwPCROWIHaMgkEErBhY7nOMwSlMdhpJf4ehzIswRv7SUf3XR0TMqJwQCGnh8OTu_F0BJLztOSSDRmAGFEOR5QOKc_laI0MaCl4KgsJ62TwQ26SrRBeAKjISzkgt9euwiaxzicXbXJXd4vkFr15bpx32D1ji8kEP8e61V3t2mRZ6-Qa5zOvW0wn2NRL9Fgl5--Vd0_Y7pANq5uAu1_3Nnk4nd6Pz9Orm7OL8clVqoWQXSp4NdPFjIvCoi3yHDNmLRfaWgkFKw2I0mZcVibj3DBWGaAymzFptLERZXyb7K9yX717W2Do1LwOBpsm1nKLoFjBeM7Lf4DABGRlGcHjFWi8C8GjVa--nmv_riioXrpSvXTVq1S9StVLV1G6olT10mPE3tcuHYxubHRk6vCbk8dVICByjysuYqhe3MK30ZW6vJlOJw8QP4dDfyjtn7n8HlYt_irxAWHHmyw</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Clapp, Lee W</creator><creator>Semmens, Michael J</creator><creator>Novak, Paige J</creator><creator>Hozalski, Raymond M</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QO</scope><scope>7TV</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7SU</scope><scope>7TA</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20041101</creationdate><title>Model for In Situ Perchloroethene Dechlorination via Membrane-Delivered Hydrogen</title><author>Clapp, Lee W ; Semmens, Michael J ; Novak, Paige J ; Hozalski, Raymond M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-43dba8b348fef866e52ff34aff70829c049f537dc533c22dc0175b27cacf52f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acetates</topic><topic>Acetic acid</topic><topic>Applied sciences</topic><topic>Aquifers</topic><topic>Biomass</topic><topic>Chlorides</topic><topic>Chlorine</topic><topic>Computer simulation</topic><topic>Dechlorination</topic><topic>Environmental engineering</topic><topic>Exact sciences and technology</topic><topic>Membranes</topic><topic>Pollution</topic><topic>Soil (material)</topic><topic>TECHNICAL PAPERS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clapp, Lee W</creatorcontrib><creatorcontrib>Semmens, Michael J</creatorcontrib><creatorcontrib>Novak, Paige J</creatorcontrib><creatorcontrib>Hozalski, Raymond M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Materials Business File</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of environmental engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clapp, Lee W</au><au>Semmens, Michael J</au><au>Novak, Paige J</au><au>Hozalski, Raymond M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model for In Situ Perchloroethene Dechlorination via Membrane-Delivered Hydrogen</atitle><jtitle>Journal of environmental engineering (New York, N.Y.)</jtitle><date>2004-11-01</date><risdate>2004</risdate><volume>130</volume><issue>11</issue><spage>1367</spage><epage>1381</epage><pages>1367-1381</pages><issn>0733-9372</issn><eissn>1943-7870</eissn><coden>JOEEDU</coden><abstract>A one-dimensional contaminant fate and transport model was developed to simulate reductive dechlorination of perchloroethene (PCE) in an anaerobic aquifer supplied with hydrogen via a gas-permeable membrane curtain. The model predicted that providing hydrogen at transfer rates equal to the reducing-equivalent demand associated with the groundwater PCE flux would mineralize 75% of the PCE-bound chlorine to chloride and, furthermore, that 0.55 moles of chloride would be released per mole of hydrogen transferred. Supplying higher hydrogen transfer rates was predicted to result in slightly lower dechlorination efficiencies and significantly lower dechlorination yields due to greater methanogenic growth and concomitant displacement of dehalorespirers away from the hydrogen-supply membranes. The model also predicted that high hydrogen-utilizing biomass concentrations would develop near the membranes, resulting in minimal hydrogen dispersal. Model predictions were qualitatively similar to results attained in experimental soil column studies; however, incorporation of homoacetogenesis and acetate utilization by dehalorespirers, as well as hydrogen production via fermentation of biomass decay products, would have improved agreement between model simulations and experimentally observed dechlorination performance.</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9372(2004)130:11(1367)</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-9372
ispartof Journal of environmental engineering (New York, N.Y.), 2004-11, Vol.130 (11), p.1367-1381
issn 0733-9372
1943-7870
language eng
recordid cdi_proquest_miscellaneous_28236392
source American Society of Civil Engineers:NESLI2:Journals:2014; Business Source Complete
subjects Acetates
Acetic acid
Applied sciences
Aquifers
Biomass
Chlorides
Chlorine
Computer simulation
Dechlorination
Environmental engineering
Exact sciences and technology
Membranes
Pollution
Soil (material)
TECHNICAL PAPERS
title Model for In Situ Perchloroethene Dechlorination via Membrane-Delivered Hydrogen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20for%20In%20Situ%20Perchloroethene%20Dechlorination%20via%20Membrane-Delivered%20Hydrogen&rft.jtitle=Journal%20of%20environmental%20engineering%20(New%20York,%20N.Y.)&rft.au=Clapp,%20Lee%20W&rft.date=2004-11-01&rft.volume=130&rft.issue=11&rft.spage=1367&rft.epage=1381&rft.pages=1367-1381&rft.issn=0733-9372&rft.eissn=1943-7870&rft.coden=JOEEDU&rft_id=info:doi/10.1061/(ASCE)0733-9372(2004)130:11(1367)&rft_dat=%3Cproquest_cross%3E308289596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20240599&rft_id=info:pmid/&rfr_iscdi=true