Model for In Situ Perchloroethene Dechlorination via Membrane-Delivered Hydrogen
A one-dimensional contaminant fate and transport model was developed to simulate reductive dechlorination of perchloroethene (PCE) in an anaerobic aquifer supplied with hydrogen via a gas-permeable membrane curtain. The model predicted that providing hydrogen at transfer rates equal to the reducing-...
Gespeichert in:
Veröffentlicht in: | Journal of environmental engineering (New York, N.Y.) N.Y.), 2004-11, Vol.130 (11), p.1367-1381 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1381 |
---|---|
container_issue | 11 |
container_start_page | 1367 |
container_title | Journal of environmental engineering (New York, N.Y.) |
container_volume | 130 |
creator | Clapp, Lee W Semmens, Michael J Novak, Paige J Hozalski, Raymond M |
description | A one-dimensional contaminant fate and transport model was developed to simulate reductive dechlorination of perchloroethene (PCE) in an anaerobic aquifer supplied with hydrogen via a gas-permeable membrane curtain. The model predicted that providing hydrogen at transfer rates equal to the reducing-equivalent demand associated with the groundwater PCE flux would mineralize 75% of the PCE-bound chlorine to chloride and, furthermore, that 0.55 moles of chloride would be released per mole of hydrogen transferred. Supplying higher hydrogen transfer rates was predicted to result in slightly lower dechlorination efficiencies and significantly lower dechlorination yields due to greater methanogenic growth and concomitant displacement of dehalorespirers away from the hydrogen-supply membranes. The model also predicted that high hydrogen-utilizing biomass concentrations would develop near the membranes, resulting in minimal hydrogen dispersal. Model predictions were qualitatively similar to results attained in experimental soil column studies; however, incorporation of homoacetogenesis and acetate utilization by dehalorespirers, as well as hydrogen production via fermentation of biomass decay products, would have improved agreement between model simulations and experimentally observed dechlorination performance. |
doi_str_mv | 10.1061/(ASCE)0733-9372(2004)130:11(1367) |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28236392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>308289596</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-43dba8b348fef866e52ff34aff70829c049f537dc533c22dc0175b27cacf52f23</originalsourceid><addsrcrecordid>eNqNkclOwzAURS0EEmX4h2xA7SLwPCROWIHaMgkEErBhY7nOMwSlMdhpJf4ehzIswRv7SUf3XR0TMqJwQCGnh8OTu_F0BJLztOSSDRmAGFEOR5QOKc_laI0MaCl4KgsJ62TwQ26SrRBeAKjISzkgt9euwiaxzicXbXJXd4vkFr15bpx32D1ji8kEP8e61V3t2mRZ6-Qa5zOvW0wn2NRL9Fgl5--Vd0_Y7pANq5uAu1_3Nnk4nd6Pz9Orm7OL8clVqoWQXSp4NdPFjIvCoi3yHDNmLRfaWgkFKw2I0mZcVibj3DBWGaAymzFptLERZXyb7K9yX717W2Do1LwOBpsm1nKLoFjBeM7Lf4DABGRlGcHjFWi8C8GjVa--nmv_riioXrpSvXTVq1S9StVLV1G6olT10mPE3tcuHYxubHRk6vCbk8dVICByjysuYqhe3MK30ZW6vJlOJw8QP4dDfyjtn7n8HlYt_irxAWHHmyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20240599</pqid></control><display><type>article</type><title>Model for In Situ Perchloroethene Dechlorination via Membrane-Delivered Hydrogen</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><source>Business Source Complete</source><creator>Clapp, Lee W ; Semmens, Michael J ; Novak, Paige J ; Hozalski, Raymond M</creator><creatorcontrib>Clapp, Lee W ; Semmens, Michael J ; Novak, Paige J ; Hozalski, Raymond M</creatorcontrib><description>A one-dimensional contaminant fate and transport model was developed to simulate reductive dechlorination of perchloroethene (PCE) in an anaerobic aquifer supplied with hydrogen via a gas-permeable membrane curtain. The model predicted that providing hydrogen at transfer rates equal to the reducing-equivalent demand associated with the groundwater PCE flux would mineralize 75% of the PCE-bound chlorine to chloride and, furthermore, that 0.55 moles of chloride would be released per mole of hydrogen transferred. Supplying higher hydrogen transfer rates was predicted to result in slightly lower dechlorination efficiencies and significantly lower dechlorination yields due to greater methanogenic growth and concomitant displacement of dehalorespirers away from the hydrogen-supply membranes. The model also predicted that high hydrogen-utilizing biomass concentrations would develop near the membranes, resulting in minimal hydrogen dispersal. Model predictions were qualitatively similar to results attained in experimental soil column studies; however, incorporation of homoacetogenesis and acetate utilization by dehalorespirers, as well as hydrogen production via fermentation of biomass decay products, would have improved agreement between model simulations and experimentally observed dechlorination performance.</description><identifier>ISSN: 0733-9372</identifier><identifier>EISSN: 1943-7870</identifier><identifier>DOI: 10.1061/(ASCE)0733-9372(2004)130:11(1367)</identifier><identifier>CODEN: JOEEDU</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>Acetates ; Acetic acid ; Applied sciences ; Aquifers ; Biomass ; Chlorides ; Chlorine ; Computer simulation ; Dechlorination ; Environmental engineering ; Exact sciences and technology ; Membranes ; Pollution ; Soil (material) ; TECHNICAL PAPERS</subject><ispartof>Journal of environmental engineering (New York, N.Y.), 2004-11, Vol.130 (11), p.1367-1381</ispartof><rights>Copyright © 2004 ASCE</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-43dba8b348fef866e52ff34aff70829c049f537dc533c22dc0175b27cacf52f23</citedby><cites>FETCH-LOGICAL-a447t-43dba8b348fef866e52ff34aff70829c049f537dc533c22dc0175b27cacf52f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9372(2004)130:11(1367)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9372(2004)130:11(1367)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76193,76201</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16240040$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Clapp, Lee W</creatorcontrib><creatorcontrib>Semmens, Michael J</creatorcontrib><creatorcontrib>Novak, Paige J</creatorcontrib><creatorcontrib>Hozalski, Raymond M</creatorcontrib><title>Model for In Situ Perchloroethene Dechlorination via Membrane-Delivered Hydrogen</title><title>Journal of environmental engineering (New York, N.Y.)</title><description>A one-dimensional contaminant fate and transport model was developed to simulate reductive dechlorination of perchloroethene (PCE) in an anaerobic aquifer supplied with hydrogen via a gas-permeable membrane curtain. The model predicted that providing hydrogen at transfer rates equal to the reducing-equivalent demand associated with the groundwater PCE flux would mineralize 75% of the PCE-bound chlorine to chloride and, furthermore, that 0.55 moles of chloride would be released per mole of hydrogen transferred. Supplying higher hydrogen transfer rates was predicted to result in slightly lower dechlorination efficiencies and significantly lower dechlorination yields due to greater methanogenic growth and concomitant displacement of dehalorespirers away from the hydrogen-supply membranes. The model also predicted that high hydrogen-utilizing biomass concentrations would develop near the membranes, resulting in minimal hydrogen dispersal. Model predictions were qualitatively similar to results attained in experimental soil column studies; however, incorporation of homoacetogenesis and acetate utilization by dehalorespirers, as well as hydrogen production via fermentation of biomass decay products, would have improved agreement between model simulations and experimentally observed dechlorination performance.</description><subject>Acetates</subject><subject>Acetic acid</subject><subject>Applied sciences</subject><subject>Aquifers</subject><subject>Biomass</subject><subject>Chlorides</subject><subject>Chlorine</subject><subject>Computer simulation</subject><subject>Dechlorination</subject><subject>Environmental engineering</subject><subject>Exact sciences and technology</subject><subject>Membranes</subject><subject>Pollution</subject><subject>Soil (material)</subject><subject>TECHNICAL PAPERS</subject><issn>0733-9372</issn><issn>1943-7870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkclOwzAURS0EEmX4h2xA7SLwPCROWIHaMgkEErBhY7nOMwSlMdhpJf4ehzIswRv7SUf3XR0TMqJwQCGnh8OTu_F0BJLztOSSDRmAGFEOR5QOKc_laI0MaCl4KgsJ62TwQ26SrRBeAKjISzkgt9euwiaxzicXbXJXd4vkFr15bpx32D1ji8kEP8e61V3t2mRZ6-Qa5zOvW0wn2NRL9Fgl5--Vd0_Y7pANq5uAu1_3Nnk4nd6Pz9Orm7OL8clVqoWQXSp4NdPFjIvCoi3yHDNmLRfaWgkFKw2I0mZcVibj3DBWGaAymzFptLERZXyb7K9yX717W2Do1LwOBpsm1nKLoFjBeM7Lf4DABGRlGcHjFWi8C8GjVa--nmv_riioXrpSvXTVq1S9StVLV1G6olT10mPE3tcuHYxubHRk6vCbk8dVICByjysuYqhe3MK30ZW6vJlOJw8QP4dDfyjtn7n8HlYt_irxAWHHmyw</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Clapp, Lee W</creator><creator>Semmens, Michael J</creator><creator>Novak, Paige J</creator><creator>Hozalski, Raymond M</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QO</scope><scope>7TV</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7SU</scope><scope>7TA</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20041101</creationdate><title>Model for In Situ Perchloroethene Dechlorination via Membrane-Delivered Hydrogen</title><author>Clapp, Lee W ; Semmens, Michael J ; Novak, Paige J ; Hozalski, Raymond M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-43dba8b348fef866e52ff34aff70829c049f537dc533c22dc0175b27cacf52f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acetates</topic><topic>Acetic acid</topic><topic>Applied sciences</topic><topic>Aquifers</topic><topic>Biomass</topic><topic>Chlorides</topic><topic>Chlorine</topic><topic>Computer simulation</topic><topic>Dechlorination</topic><topic>Environmental engineering</topic><topic>Exact sciences and technology</topic><topic>Membranes</topic><topic>Pollution</topic><topic>Soil (material)</topic><topic>TECHNICAL PAPERS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clapp, Lee W</creatorcontrib><creatorcontrib>Semmens, Michael J</creatorcontrib><creatorcontrib>Novak, Paige J</creatorcontrib><creatorcontrib>Hozalski, Raymond M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Materials Business File</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of environmental engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clapp, Lee W</au><au>Semmens, Michael J</au><au>Novak, Paige J</au><au>Hozalski, Raymond M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model for In Situ Perchloroethene Dechlorination via Membrane-Delivered Hydrogen</atitle><jtitle>Journal of environmental engineering (New York, N.Y.)</jtitle><date>2004-11-01</date><risdate>2004</risdate><volume>130</volume><issue>11</issue><spage>1367</spage><epage>1381</epage><pages>1367-1381</pages><issn>0733-9372</issn><eissn>1943-7870</eissn><coden>JOEEDU</coden><abstract>A one-dimensional contaminant fate and transport model was developed to simulate reductive dechlorination of perchloroethene (PCE) in an anaerobic aquifer supplied with hydrogen via a gas-permeable membrane curtain. The model predicted that providing hydrogen at transfer rates equal to the reducing-equivalent demand associated with the groundwater PCE flux would mineralize 75% of the PCE-bound chlorine to chloride and, furthermore, that 0.55 moles of chloride would be released per mole of hydrogen transferred. Supplying higher hydrogen transfer rates was predicted to result in slightly lower dechlorination efficiencies and significantly lower dechlorination yields due to greater methanogenic growth and concomitant displacement of dehalorespirers away from the hydrogen-supply membranes. The model also predicted that high hydrogen-utilizing biomass concentrations would develop near the membranes, resulting in minimal hydrogen dispersal. Model predictions were qualitatively similar to results attained in experimental soil column studies; however, incorporation of homoacetogenesis and acetate utilization by dehalorespirers, as well as hydrogen production via fermentation of biomass decay products, would have improved agreement between model simulations and experimentally observed dechlorination performance.</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9372(2004)130:11(1367)</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9372 |
ispartof | Journal of environmental engineering (New York, N.Y.), 2004-11, Vol.130 (11), p.1367-1381 |
issn | 0733-9372 1943-7870 |
language | eng |
recordid | cdi_proquest_miscellaneous_28236392 |
source | American Society of Civil Engineers:NESLI2:Journals:2014; Business Source Complete |
subjects | Acetates Acetic acid Applied sciences Aquifers Biomass Chlorides Chlorine Computer simulation Dechlorination Environmental engineering Exact sciences and technology Membranes Pollution Soil (material) TECHNICAL PAPERS |
title | Model for In Situ Perchloroethene Dechlorination via Membrane-Delivered Hydrogen |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20for%20In%20Situ%20Perchloroethene%20Dechlorination%20via%20Membrane-Delivered%20Hydrogen&rft.jtitle=Journal%20of%20environmental%20engineering%20(New%20York,%20N.Y.)&rft.au=Clapp,%20Lee%20W&rft.date=2004-11-01&rft.volume=130&rft.issue=11&rft.spage=1367&rft.epage=1381&rft.pages=1367-1381&rft.issn=0733-9372&rft.eissn=1943-7870&rft.coden=JOEEDU&rft_id=info:doi/10.1061/(ASCE)0733-9372(2004)130:11(1367)&rft_dat=%3Cproquest_cross%3E308289596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20240599&rft_id=info:pmid/&rfr_iscdi=true |