Large-scale simulations of Ostwald ripening in elastically stressed solids. II. Coarsening kinetics and particle size distribution

Ostwald ripening of misfitting second-phase particles in an elastically anisotropic solid is studied by large-scale simulations. The coarsening kinetics for the average particle size are described by a t 1/3 power law with a rate constant equal to its stress-free value when the particles are fourfol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2004-03, Vol.52 (5), p.1365-1378
Hauptverfasser: Thornton, K., Akaiwa, Norio, Voorhees, P.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1378
container_issue 5
container_start_page 1365
container_title Acta materialia
container_volume 52
creator Thornton, K.
Akaiwa, Norio
Voorhees, P.W.
description Ostwald ripening of misfitting second-phase particles in an elastically anisotropic solid is studied by large-scale simulations. The coarsening kinetics for the average particle size are described by a t 1/3 power law with a rate constant equal to its stress-free value when the particles are fourfold symmetric. However, the rate constant increases when the elastic stress is sufficient to induce a large number of twofold-symmetric particles. We find that interparticle elastic interactions at a 10% area fraction of particles do not affect the overall coarsening kinetics. A mean-field approach was used to develop a theory of Ostwald ripening in the presence of elastic stress. The simulation results on the coarsening kinetics agree well with the theoretical predictions. The particle size distribution scaled by the average particle size is not time invariant, but widens slightly with an increasing ratio of elastic to interfacial energies. No time-independent steady state under scaling is found, but a unique time-dependent state exists that is characterized by the ratio of elastic energy to interfacial energy.
doi_str_mv 10.1016/j.actamat.2003.11.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28233069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645403007171</els_id><sourcerecordid>28206465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-1637f3cb6ba7bad6ed0ea61445a5ed927d97d802e3a88e69f0f452639f87ceac3</originalsourceid><addsrcrecordid>eNqNkUuPEzEQhEcIJJZlf8JKvsBtBnv8mJkTQhGPSJH2wp6tjt2zcnA8we2AluP-chwSiSOcug9fdbWqmuZW8E5wYd7tOnAF9lC6nnPZCdFxaZ41V2IcZNsrLZ_XXeqpNUqrl80roh3noh8Uv2qeNpAfsCUHERmF_TFCCUsitszsjspPiJ7lcMAU0gMLiWEEKqHS8ZFRyUiEntESg6eOrdcdWy2Q6Yx_CwkrSwySZwfIdf9j8guZD1UctseT1-vmxQyR8OYyr5v7Tx-_rr60m7vP69WHTeuU0aUVRg6zdFuzhWEL3qDnCEYopUGjn_rBT4MfeY8SxhHNNPNZ6d7IaR4Hh-DkdfP2fPeQl-9HpGL3gRzGCAmXI9l-7KXkZvofkJv6UwX1GXR5Ico420MOe8iPVnB7qsbu7KUae6rGCmFrNVX35mIAp-DnDMkF-ivWWisuVeXenzmssfwImC25gMmhDxldsX4J_3D6DTWOqhU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28206465</pqid></control><display><type>article</type><title>Large-scale simulations of Ostwald ripening in elastically stressed solids. II. Coarsening kinetics and particle size distribution</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Thornton, K. ; Akaiwa, Norio ; Voorhees, P.W.</creator><creatorcontrib>Thornton, K. ; Akaiwa, Norio ; Voorhees, P.W.</creatorcontrib><description>Ostwald ripening of misfitting second-phase particles in an elastically anisotropic solid is studied by large-scale simulations. The coarsening kinetics for the average particle size are described by a t 1/3 power law with a rate constant equal to its stress-free value when the particles are fourfold symmetric. However, the rate constant increases when the elastic stress is sufficient to induce a large number of twofold-symmetric particles. We find that interparticle elastic interactions at a 10% area fraction of particles do not affect the overall coarsening kinetics. A mean-field approach was used to develop a theory of Ostwald ripening in the presence of elastic stress. The simulation results on the coarsening kinetics agree well with the theoretical predictions. The particle size distribution scaled by the average particle size is not time invariant, but widens slightly with an increasing ratio of elastic to interfacial energies. No time-independent steady state under scaling is found, but a unique time-dependent state exists that is characterized by the ratio of elastic energy to interfacial energy.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2003.11.036</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alloys ; Coarsening ; Coherent precipitates ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Phase transformations ; Physics ; Precipitation ; Solid-phase precipitation</subject><ispartof>Acta materialia, 2004-03, Vol.52 (5), p.1365-1378</ispartof><rights>2003 Acta Materialia Inc.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-1637f3cb6ba7bad6ed0ea61445a5ed927d97d802e3a88e69f0f452639f87ceac3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2003.11.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15554034$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Thornton, K.</creatorcontrib><creatorcontrib>Akaiwa, Norio</creatorcontrib><creatorcontrib>Voorhees, P.W.</creatorcontrib><title>Large-scale simulations of Ostwald ripening in elastically stressed solids. II. Coarsening kinetics and particle size distribution</title><title>Acta materialia</title><description>Ostwald ripening of misfitting second-phase particles in an elastically anisotropic solid is studied by large-scale simulations. The coarsening kinetics for the average particle size are described by a t 1/3 power law with a rate constant equal to its stress-free value when the particles are fourfold symmetric. However, the rate constant increases when the elastic stress is sufficient to induce a large number of twofold-symmetric particles. We find that interparticle elastic interactions at a 10% area fraction of particles do not affect the overall coarsening kinetics. A mean-field approach was used to develop a theory of Ostwald ripening in the presence of elastic stress. The simulation results on the coarsening kinetics agree well with the theoretical predictions. The particle size distribution scaled by the average particle size is not time invariant, but widens slightly with an increasing ratio of elastic to interfacial energies. No time-independent steady state under scaling is found, but a unique time-dependent state exists that is characterized by the ratio of elastic energy to interfacial energy.</description><subject>Alloys</subject><subject>Coarsening</subject><subject>Coherent precipitates</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Phase transformations</subject><subject>Physics</subject><subject>Precipitation</subject><subject>Solid-phase precipitation</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkUuPEzEQhEcIJJZlf8JKvsBtBnv8mJkTQhGPSJH2wp6tjt2zcnA8we2AluP-chwSiSOcug9fdbWqmuZW8E5wYd7tOnAF9lC6nnPZCdFxaZ41V2IcZNsrLZ_XXeqpNUqrl80roh3noh8Uv2qeNpAfsCUHERmF_TFCCUsitszsjspPiJ7lcMAU0gMLiWEEKqHS8ZFRyUiEntESg6eOrdcdWy2Q6Yx_CwkrSwySZwfIdf9j8guZD1UctseT1-vmxQyR8OYyr5v7Tx-_rr60m7vP69WHTeuU0aUVRg6zdFuzhWEL3qDnCEYopUGjn_rBT4MfeY8SxhHNNPNZ6d7IaR4Hh-DkdfP2fPeQl-9HpGL3gRzGCAmXI9l-7KXkZvofkJv6UwX1GXR5Ico420MOe8iPVnB7qsbu7KUae6rGCmFrNVX35mIAp-DnDMkF-ivWWisuVeXenzmssfwImC25gMmhDxldsX4J_3D6DTWOqhU</recordid><startdate>20040308</startdate><enddate>20040308</enddate><creator>Thornton, K.</creator><creator>Akaiwa, Norio</creator><creator>Voorhees, P.W.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20040308</creationdate><title>Large-scale simulations of Ostwald ripening in elastically stressed solids. II. Coarsening kinetics and particle size distribution</title><author>Thornton, K. ; Akaiwa, Norio ; Voorhees, P.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-1637f3cb6ba7bad6ed0ea61445a5ed927d97d802e3a88e69f0f452639f87ceac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Alloys</topic><topic>Coarsening</topic><topic>Coherent precipitates</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Phase transformations</topic><topic>Physics</topic><topic>Precipitation</topic><topic>Solid-phase precipitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thornton, K.</creatorcontrib><creatorcontrib>Akaiwa, Norio</creatorcontrib><creatorcontrib>Voorhees, P.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thornton, K.</au><au>Akaiwa, Norio</au><au>Voorhees, P.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale simulations of Ostwald ripening in elastically stressed solids. II. Coarsening kinetics and particle size distribution</atitle><jtitle>Acta materialia</jtitle><date>2004-03-08</date><risdate>2004</risdate><volume>52</volume><issue>5</issue><spage>1365</spage><epage>1378</epage><pages>1365-1378</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Ostwald ripening of misfitting second-phase particles in an elastically anisotropic solid is studied by large-scale simulations. The coarsening kinetics for the average particle size are described by a t 1/3 power law with a rate constant equal to its stress-free value when the particles are fourfold symmetric. However, the rate constant increases when the elastic stress is sufficient to induce a large number of twofold-symmetric particles. We find that interparticle elastic interactions at a 10% area fraction of particles do not affect the overall coarsening kinetics. A mean-field approach was used to develop a theory of Ostwald ripening in the presence of elastic stress. The simulation results on the coarsening kinetics agree well with the theoretical predictions. The particle size distribution scaled by the average particle size is not time invariant, but widens slightly with an increasing ratio of elastic to interfacial energies. No time-independent steady state under scaling is found, but a unique time-dependent state exists that is characterized by the ratio of elastic energy to interfacial energy.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2003.11.036</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2004-03, Vol.52 (5), p.1365-1378
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_28233069
source Elsevier ScienceDirect Journals Complete
subjects Alloys
Coarsening
Coherent precipitates
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Materials science
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Phase transformations
Physics
Precipitation
Solid-phase precipitation
title Large-scale simulations of Ostwald ripening in elastically stressed solids. II. Coarsening kinetics and particle size distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20simulations%20of%20Ostwald%20ripening%20in%20elastically%20stressed%20solids.%20II.%20Coarsening%20kinetics%20and%20particle%20size%20distribution&rft.jtitle=Acta%20materialia&rft.au=Thornton,%20K.&rft.date=2004-03-08&rft.volume=52&rft.issue=5&rft.spage=1365&rft.epage=1378&rft.pages=1365-1378&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2003.11.036&rft_dat=%3Cproquest_cross%3E28206465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28206465&rft_id=info:pmid/&rft_els_id=S1359645403007171&rfr_iscdi=true