Modelling two- and three-dimensional separation from curved surfaces with anisotropy-resolving turbulence closures

The ability of non-linear eddy-viscosity and second-moment models to predict separation from two- and three-dimensional curved surfaces is examined on the basis of computations for two flows that are geometrically akin: one separating from periodically-spaced, two-dimensional `hills' in a plane...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and fluid flow 2004-06, Vol.25 (3), p.499-512
Hauptverfasser: Wang, C., Jang, Y.J., Leschziner, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 512
container_issue 3
container_start_page 499
container_title International journal of heat and fluid flow
container_volume 25
creator Wang, C.
Jang, Y.J.
Leschziner, M.A.
description The ability of non-linear eddy-viscosity and second-moment models to predict separation from two- and three-dimensional curved surfaces is examined on the basis of computations for two flows that are geometrically akin: one separating from periodically-spaced, two-dimensional `hills' in a plane channel, and the other from a three-dimensional hill in a duct. One major objective is to examine whether the predictive performance in 3-d (three-dimensional) conditions relates to that in 2-d (two-dimensional) flow. In the former, the separation pattern is far more complicated, being characterised by multiple vortical structures associated with `open' separation. The predicted separation behaviour in the 2-d flow differs significantly from model to model, with only one non-linear model among those examined performing well, this variant formulated to adhere to the two-component wall limit. In 3-d separation, none of the models gives a credible representation of the complex multi-vortical separation pattern.
doi_str_mv 10.1016/j.ijheatfluidflow.2004.02.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28232795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142727X04000244</els_id><sourcerecordid>28232795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-46f5160fdde9dee43569e4410feb114c8b342cf89a86a79456533e39acc0ec4f3</originalsourceid><addsrcrecordid>eNqNkUFrGzEQhUVpoW7a_6BLetuNpNWupEMOJbRpISGXFnoTsjSKZeSVK2lt8u8rx4FCTzkNA997w7yH0CUlPSV0utr2YbsBU31cgvMxHXtGCO8J6wlRb9CKSqE6xoR8i1aEctYJJn6_Rx9K2RJCJsLFCuX75CDGMD_iekwdNrPDdZMBOhd2MJeQZhNxgb3JprYF-5x22C75AA6XJXtjoeBjqJsmDSXVnPZPXYaS4uHZdMnrJcJsAduYmgDKR_TOm1jg08u8QL--ff158727e7j9cfPlrrN8ZLXjkx_pRLxzoBwAH8ZJAeeUeFhTyq1cD5xZL5WRkxGKj9M4DDAoYy0By_1wgT6fffc5_VmgVL0LxbZnzQxpKZpJNjChxleAdKBKqAZen0GbUykZvN7nsDP5SVOiT5Xorf6vEn2qRBOmWyVNf_lyyBRros9mtqH8MxmlEqOUjbs9c9DiOQTIuthwytCFDLZql8IrL_4FTT6vcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28131979</pqid></control><display><type>article</type><title>Modelling two- and three-dimensional separation from curved surfaces with anisotropy-resolving turbulence closures</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, C. ; Jang, Y.J. ; Leschziner, M.A.</creator><creatorcontrib>Wang, C. ; Jang, Y.J. ; Leschziner, M.A.</creatorcontrib><description>The ability of non-linear eddy-viscosity and second-moment models to predict separation from two- and three-dimensional curved surfaces is examined on the basis of computations for two flows that are geometrically akin: one separating from periodically-spaced, two-dimensional `hills' in a plane channel, and the other from a three-dimensional hill in a duct. One major objective is to examine whether the predictive performance in 3-d (three-dimensional) conditions relates to that in 2-d (two-dimensional) flow. In the former, the separation pattern is far more complicated, being characterised by multiple vortical structures associated with `open' separation. The predicted separation behaviour in the 2-d flow differs significantly from model to model, with only one non-linear model among those examined performing well, this variant formulated to adhere to the two-component wall limit. In 3-d separation, none of the models gives a credible representation of the complex multi-vortical separation pattern.</description><identifier>ISSN: 0142-727X</identifier><identifier>EISSN: 1879-2278</identifier><identifier>DOI: 10.1016/j.ijheatfluidflow.2004.02.009</identifier><identifier>CODEN: IJHFD2</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Curved surfaces ; Exact sciences and technology ; Flows in ducts, channels, nozzles, and conduits ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Non-linear eddy-viscosity models ; Physics ; Reynolds-stress models ; Separation ; Turbulence modelling ; Turbulence simulation and modeling ; Turbulent flows, convection, and heat transfer</subject><ispartof>International journal of heat and fluid flow, 2004-06, Vol.25 (3), p.499-512</ispartof><rights>2004 Elsevier Inc.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-46f5160fdde9dee43569e4410feb114c8b342cf89a86a79456533e39acc0ec4f3</citedby><cites>FETCH-LOGICAL-c452t-46f5160fdde9dee43569e4410feb114c8b342cf89a86a79456533e39acc0ec4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142727X04000244$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23911,23912,25120,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15897588$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, C.</creatorcontrib><creatorcontrib>Jang, Y.J.</creatorcontrib><creatorcontrib>Leschziner, M.A.</creatorcontrib><title>Modelling two- and three-dimensional separation from curved surfaces with anisotropy-resolving turbulence closures</title><title>International journal of heat and fluid flow</title><description>The ability of non-linear eddy-viscosity and second-moment models to predict separation from two- and three-dimensional curved surfaces is examined on the basis of computations for two flows that are geometrically akin: one separating from periodically-spaced, two-dimensional `hills' in a plane channel, and the other from a three-dimensional hill in a duct. One major objective is to examine whether the predictive performance in 3-d (three-dimensional) conditions relates to that in 2-d (two-dimensional) flow. In the former, the separation pattern is far more complicated, being characterised by multiple vortical structures associated with `open' separation. The predicted separation behaviour in the 2-d flow differs significantly from model to model, with only one non-linear model among those examined performing well, this variant formulated to adhere to the two-component wall limit. In 3-d separation, none of the models gives a credible representation of the complex multi-vortical separation pattern.</description><subject>Curved surfaces</subject><subject>Exact sciences and technology</subject><subject>Flows in ducts, channels, nozzles, and conduits</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Non-linear eddy-viscosity models</subject><subject>Physics</subject><subject>Reynolds-stress models</subject><subject>Separation</subject><subject>Turbulence modelling</subject><subject>Turbulence simulation and modeling</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0142-727X</issn><issn>1879-2278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkUFrGzEQhUVpoW7a_6BLetuNpNWupEMOJbRpISGXFnoTsjSKZeSVK2lt8u8rx4FCTzkNA997w7yH0CUlPSV0utr2YbsBU31cgvMxHXtGCO8J6wlRb9CKSqE6xoR8i1aEctYJJn6_Rx9K2RJCJsLFCuX75CDGMD_iekwdNrPDdZMBOhd2MJeQZhNxgb3JprYF-5x22C75AA6XJXtjoeBjqJsmDSXVnPZPXYaS4uHZdMnrJcJsAduYmgDKR_TOm1jg08u8QL--ff158727e7j9cfPlrrN8ZLXjkx_pRLxzoBwAH8ZJAeeUeFhTyq1cD5xZL5WRkxGKj9M4DDAoYy0By_1wgT6fffc5_VmgVL0LxbZnzQxpKZpJNjChxleAdKBKqAZen0GbUykZvN7nsDP5SVOiT5Xorf6vEn2qRBOmWyVNf_lyyBRros9mtqH8MxmlEqOUjbs9c9DiOQTIuthwytCFDLZql8IrL_4FTT6vcw</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Wang, C.</creator><creator>Jang, Y.J.</creator><creator>Leschziner, M.A.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>20040601</creationdate><title>Modelling two- and three-dimensional separation from curved surfaces with anisotropy-resolving turbulence closures</title><author>Wang, C. ; Jang, Y.J. ; Leschziner, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-46f5160fdde9dee43569e4410feb114c8b342cf89a86a79456533e39acc0ec4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Curved surfaces</topic><topic>Exact sciences and technology</topic><topic>Flows in ducts, channels, nozzles, and conduits</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Non-linear eddy-viscosity models</topic><topic>Physics</topic><topic>Reynolds-stress models</topic><topic>Separation</topic><topic>Turbulence modelling</topic><topic>Turbulence simulation and modeling</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, C.</creatorcontrib><creatorcontrib>Jang, Y.J.</creatorcontrib><creatorcontrib>Leschziner, M.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>International journal of heat and fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, C.</au><au>Jang, Y.J.</au><au>Leschziner, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling two- and three-dimensional separation from curved surfaces with anisotropy-resolving turbulence closures</atitle><jtitle>International journal of heat and fluid flow</jtitle><date>2004-06-01</date><risdate>2004</risdate><volume>25</volume><issue>3</issue><spage>499</spage><epage>512</epage><pages>499-512</pages><issn>0142-727X</issn><eissn>1879-2278</eissn><coden>IJHFD2</coden><abstract>The ability of non-linear eddy-viscosity and second-moment models to predict separation from two- and three-dimensional curved surfaces is examined on the basis of computations for two flows that are geometrically akin: one separating from periodically-spaced, two-dimensional `hills' in a plane channel, and the other from a three-dimensional hill in a duct. One major objective is to examine whether the predictive performance in 3-d (three-dimensional) conditions relates to that in 2-d (two-dimensional) flow. In the former, the separation pattern is far more complicated, being characterised by multiple vortical structures associated with `open' separation. The predicted separation behaviour in the 2-d flow differs significantly from model to model, with only one non-linear model among those examined performing well, this variant formulated to adhere to the two-component wall limit. In 3-d separation, none of the models gives a credible representation of the complex multi-vortical separation pattern.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.ijheatfluidflow.2004.02.009</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-727X
ispartof International journal of heat and fluid flow, 2004-06, Vol.25 (3), p.499-512
issn 0142-727X
1879-2278
language eng
recordid cdi_proquest_miscellaneous_28232795
source Elsevier ScienceDirect Journals
subjects Curved surfaces
Exact sciences and technology
Flows in ducts, channels, nozzles, and conduits
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Non-linear eddy-viscosity models
Physics
Reynolds-stress models
Separation
Turbulence modelling
Turbulence simulation and modeling
Turbulent flows, convection, and heat transfer
title Modelling two- and three-dimensional separation from curved surfaces with anisotropy-resolving turbulence closures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20two-%20and%20three-dimensional%20separation%20from%20curved%20surfaces%20with%20anisotropy-resolving%20turbulence%20closures&rft.jtitle=International%20journal%20of%20heat%20and%20fluid%20flow&rft.au=Wang,%20C.&rft.date=2004-06-01&rft.volume=25&rft.issue=3&rft.spage=499&rft.epage=512&rft.pages=499-512&rft.issn=0142-727X&rft.eissn=1879-2278&rft.coden=IJHFD2&rft_id=info:doi/10.1016/j.ijheatfluidflow.2004.02.009&rft_dat=%3Cproquest_cross%3E28232795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28131979&rft_id=info:pmid/&rft_els_id=S0142727X04000244&rfr_iscdi=true