Mechanical behavior and deformation mechanisms of Ti–2.5Cu alloy reinforced by nano-scale precipitates at 293 and 77 K

Nano-scale precipitates were obtained in Ti–2.5Cu alloy after solution and aging treatment, and the precipitates were determined to be Ti 2Cu intermetallic compound and arrange along three directions [ 1 ̄ 2 2 ̄ ], [ 2 1 ̄ 1 ] and [ 2 1 1 ̄ ]. Tensile tests and low-cycle fatigue tests were conducted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2004-01, Vol.364 (1), p.159-165
Hauptverfasser: Sun, Q.Y, Yu, Z.T, Zhu, R.H, Gu, H.C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165
container_issue 1
container_start_page 159
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 364
creator Sun, Q.Y
Yu, Z.T
Zhu, R.H
Gu, H.C
description Nano-scale precipitates were obtained in Ti–2.5Cu alloy after solution and aging treatment, and the precipitates were determined to be Ti 2Cu intermetallic compound and arrange along three directions [ 1 ̄ 2 2 ̄ ], [ 2 1 ̄ 1 ] and [ 2 1 1 ̄ ]. Tensile tests and low-cycle fatigue tests were conducted at 293 and 77 K. The results show that Ti–2.5Cu alloy possesses higher ductility and longer low-cycle fatigue life at 77 K than at 293 K, which can be interpreted by the model of twinning induced plasticity (TWIP). The microstructures indicate that slipping is predominant deformation mode at 293 K, and twinning becomes more active at lower temperature or under push–pull cyclic loading. The precipitates hinder the movement of dislocation obviously, while have little effect on twinning process. There are five types of twins identified in deformation of Ti–2.5Cu alloy reinforced by nano-scale Ti 2Cu intermetallic compound, which are { 1 1 2 ̄ 4 }, { 1 0 1 ̄ 1 }, { 1 0 1 ̄ 2 }, { 1 1 2 ̄ 2 } and { 1 1 2 ̄ 1 } twins.
doi_str_mv 10.1016/j.msea.2003.08.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28231988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509303006889</els_id><sourcerecordid>28231988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-fa8df13e6690158b8a381f357c2411658fcdc601e9f900f2dde42626b8736f9f3</originalsourceid><addsrcrecordid>eNp9kLGOEzEQhi0EEuHgBajcQLfL2M46tkSDIg4Qh2iO2pp4xzpHu3awNyfS8Q68IU-CQ06io5rmm3_m_xh7KaAXIPSbfT9Xwl4CqB5MD2J4xFbCbFS3tko_ZiuwUnQDWPWUPat1DwBiDcOK_fhC_g5T9DjxHd3hfcyFYxr5SCGXGZeYE58vTJ0rz4Hfxt8_f8l-2B45TlM-8UIxNdjTyHcnnjDlrrY84odCPh7iggtVjguXVv3N3mz45-fsScCp0ouHecW-Xb-_3X7sbr5--LR9d9N5NdilC2jGIBRpbVspszOojAhq2Hi5FkIPJvjRaxBkgwUIchxpLbXUu9ZdBxvUFXt9yT2U_P1IdXFzrJ6mCRPlY3XSSCWsMQ2UF9CXXGuh4A4lzlhOToA7S3Z7d5bszpIdGNf-aUuvHtLxXDkUTD7Wf5tDkwwgG_f2wlGreh-puOojpaYsNkeLG3P835k_Dq-SrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28231988</pqid></control><display><type>article</type><title>Mechanical behavior and deformation mechanisms of Ti–2.5Cu alloy reinforced by nano-scale precipitates at 293 and 77 K</title><source>Elsevier ScienceDirect Journals</source><creator>Sun, Q.Y ; Yu, Z.T ; Zhu, R.H ; Gu, H.C</creator><creatorcontrib>Sun, Q.Y ; Yu, Z.T ; Zhu, R.H ; Gu, H.C</creatorcontrib><description>Nano-scale precipitates were obtained in Ti–2.5Cu alloy after solution and aging treatment, and the precipitates were determined to be Ti 2Cu intermetallic compound and arrange along three directions [ 1 ̄ 2 2 ̄ ], [ 2 1 ̄ 1 ] and [ 2 1 1 ̄ ]. Tensile tests and low-cycle fatigue tests were conducted at 293 and 77 K. The results show that Ti–2.5Cu alloy possesses higher ductility and longer low-cycle fatigue life at 77 K than at 293 K, which can be interpreted by the model of twinning induced plasticity (TWIP). The microstructures indicate that slipping is predominant deformation mode at 293 K, and twinning becomes more active at lower temperature or under push–pull cyclic loading. The precipitates hinder the movement of dislocation obviously, while have little effect on twinning process. There are five types of twins identified in deformation of Ti–2.5Cu alloy reinforced by nano-scale Ti 2Cu intermetallic compound, which are { 1 1 2 ̄ 4 }, { 1 0 1 ̄ 1 }, { 1 0 1 ̄ 2 }, { 1 1 2 ̄ 2 } and { 1 1 2 ̄ 1 } twins.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2003.08.015</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Cryogenic temperature ; Deformation and plasticity (including yield, ductility, and superplasticity) ; Exact sciences and technology ; Low-cycle fatigue ; Materials science ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Metals. Metallurgy ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Precipitation ; Solid-phase precipitation ; Ti–2.5Cu alloy ; Twinning</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2004-01, Vol.364 (1), p.159-165</ispartof><rights>2003 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-fa8df13e6690158b8a381f357c2411658fcdc601e9f900f2dde42626b8736f9f3</citedby><cites>FETCH-LOGICAL-c359t-fa8df13e6690158b8a381f357c2411658fcdc601e9f900f2dde42626b8736f9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509303006889$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15405002$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Q.Y</creatorcontrib><creatorcontrib>Yu, Z.T</creatorcontrib><creatorcontrib>Zhu, R.H</creatorcontrib><creatorcontrib>Gu, H.C</creatorcontrib><title>Mechanical behavior and deformation mechanisms of Ti–2.5Cu alloy reinforced by nano-scale precipitates at 293 and 77 K</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Nano-scale precipitates were obtained in Ti–2.5Cu alloy after solution and aging treatment, and the precipitates were determined to be Ti 2Cu intermetallic compound and arrange along three directions [ 1 ̄ 2 2 ̄ ], [ 2 1 ̄ 1 ] and [ 2 1 1 ̄ ]. Tensile tests and low-cycle fatigue tests were conducted at 293 and 77 K. The results show that Ti–2.5Cu alloy possesses higher ductility and longer low-cycle fatigue life at 77 K than at 293 K, which can be interpreted by the model of twinning induced plasticity (TWIP). The microstructures indicate that slipping is predominant deformation mode at 293 K, and twinning becomes more active at lower temperature or under push–pull cyclic loading. The precipitates hinder the movement of dislocation obviously, while have little effect on twinning process. There are five types of twins identified in deformation of Ti–2.5Cu alloy reinforced by nano-scale Ti 2Cu intermetallic compound, which are { 1 1 2 ̄ 4 }, { 1 0 1 ̄ 1 }, { 1 0 1 ̄ 2 }, { 1 1 2 ̄ 2 } and { 1 1 2 ̄ 1 } twins.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Cryogenic temperature</subject><subject>Deformation and plasticity (including yield, ductility, and superplasticity)</subject><subject>Exact sciences and technology</subject><subject>Low-cycle fatigue</subject><subject>Materials science</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Metals. Metallurgy</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Precipitation</subject><subject>Solid-phase precipitation</subject><subject>Ti–2.5Cu alloy</subject><subject>Twinning</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kLGOEzEQhi0EEuHgBajcQLfL2M46tkSDIg4Qh2iO2pp4xzpHu3awNyfS8Q68IU-CQ06io5rmm3_m_xh7KaAXIPSbfT9Xwl4CqB5MD2J4xFbCbFS3tko_ZiuwUnQDWPWUPat1DwBiDcOK_fhC_g5T9DjxHd3hfcyFYxr5SCGXGZeYE58vTJ0rz4Hfxt8_f8l-2B45TlM-8UIxNdjTyHcnnjDlrrY84odCPh7iggtVjguXVv3N3mz45-fsScCp0ouHecW-Xb-_3X7sbr5--LR9d9N5NdilC2jGIBRpbVspszOojAhq2Hi5FkIPJvjRaxBkgwUIchxpLbXUu9ZdBxvUFXt9yT2U_P1IdXFzrJ6mCRPlY3XSSCWsMQ2UF9CXXGuh4A4lzlhOToA7S3Z7d5bszpIdGNf-aUuvHtLxXDkUTD7Wf5tDkwwgG_f2wlGreh-puOojpaYsNkeLG3P835k_Dq-SrA</recordid><startdate>20040115</startdate><enddate>20040115</enddate><creator>Sun, Q.Y</creator><creator>Yu, Z.T</creator><creator>Zhu, R.H</creator><creator>Gu, H.C</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20040115</creationdate><title>Mechanical behavior and deformation mechanisms of Ti–2.5Cu alloy reinforced by nano-scale precipitates at 293 and 77 K</title><author>Sun, Q.Y ; Yu, Z.T ; Zhu, R.H ; Gu, H.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-fa8df13e6690158b8a381f357c2411658fcdc601e9f900f2dde42626b8736f9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Cryogenic temperature</topic><topic>Deformation and plasticity (including yield, ductility, and superplasticity)</topic><topic>Exact sciences and technology</topic><topic>Low-cycle fatigue</topic><topic>Materials science</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Metals. Metallurgy</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Precipitation</topic><topic>Solid-phase precipitation</topic><topic>Ti–2.5Cu alloy</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Q.Y</creatorcontrib><creatorcontrib>Yu, Z.T</creatorcontrib><creatorcontrib>Zhu, R.H</creatorcontrib><creatorcontrib>Gu, H.C</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Q.Y</au><au>Yu, Z.T</au><au>Zhu, R.H</au><au>Gu, H.C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical behavior and deformation mechanisms of Ti–2.5Cu alloy reinforced by nano-scale precipitates at 293 and 77 K</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2004-01-15</date><risdate>2004</risdate><volume>364</volume><issue>1</issue><spage>159</spage><epage>165</epage><pages>159-165</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Nano-scale precipitates were obtained in Ti–2.5Cu alloy after solution and aging treatment, and the precipitates were determined to be Ti 2Cu intermetallic compound and arrange along three directions [ 1 ̄ 2 2 ̄ ], [ 2 1 ̄ 1 ] and [ 2 1 1 ̄ ]. Tensile tests and low-cycle fatigue tests were conducted at 293 and 77 K. The results show that Ti–2.5Cu alloy possesses higher ductility and longer low-cycle fatigue life at 77 K than at 293 K, which can be interpreted by the model of twinning induced plasticity (TWIP). The microstructures indicate that slipping is predominant deformation mode at 293 K, and twinning becomes more active at lower temperature or under push–pull cyclic loading. The precipitates hinder the movement of dislocation obviously, while have little effect on twinning process. There are five types of twins identified in deformation of Ti–2.5Cu alloy reinforced by nano-scale Ti 2Cu intermetallic compound, which are { 1 1 2 ̄ 4 }, { 1 0 1 ̄ 1 }, { 1 0 1 ̄ 2 }, { 1 1 2 ̄ 2 } and { 1 1 2 ̄ 1 } twins.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2003.08.015</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2004-01, Vol.364 (1), p.159-165
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_28231988
source Elsevier ScienceDirect Journals
subjects Applied sciences
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Cryogenic temperature
Deformation and plasticity (including yield, ductility, and superplasticity)
Exact sciences and technology
Low-cycle fatigue
Materials science
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Metals. Metallurgy
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
Precipitation
Solid-phase precipitation
Ti–2.5Cu alloy
Twinning
title Mechanical behavior and deformation mechanisms of Ti–2.5Cu alloy reinforced by nano-scale precipitates at 293 and 77 K
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20behavior%20and%20deformation%20mechanisms%20of%20Ti%E2%80%932.5Cu%20alloy%20reinforced%20by%20nano-scale%20precipitates%20at%20293%20and%2077%20K&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Sun,%20Q.Y&rft.date=2004-01-15&rft.volume=364&rft.issue=1&rft.spage=159&rft.epage=165&rft.pages=159-165&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2003.08.015&rft_dat=%3Cproquest_cross%3E28231988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28231988&rft_id=info:pmid/&rft_els_id=S0921509303006889&rfr_iscdi=true