Adaptive robotic visual tracking: theory and experiments

The use of a vision sensor in the feedback loop is addressed within the controlled active vision framework. Algorithms are proposed for the solution of the robotic (eye-in-hand configuration) visual tracking and servoing problem. Visual tracking is stated as a problem of combining control with compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1993-03, Vol.38 (3), p.429-445
Hauptverfasser: Papanikolopoulos, N.P., Khosla, P.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 445
container_issue 3
container_start_page 429
container_title IEEE transactions on automatic control
container_volume 38
creator Papanikolopoulos, N.P.
Khosla, P.K.
description The use of a vision sensor in the feedback loop is addressed within the controlled active vision framework. Algorithms are proposed for the solution of the robotic (eye-in-hand configuration) visual tracking and servoing problem. Visual tracking is stated as a problem of combining control with computer vision. The sum-of-squared differences optical flow is used to compute the vector of discrete displacements. The displacements are fed to an adaptive controller (self-tuning regulator) that creates commands for a robot control system. The procedure is based on the online estimation of the relative distance of the target from the camera, but only partial knowledge of the relative distance is required, obviating the need for offline calibration. Three different adaptive control schemes have been implemented, both in simulation and in experiments. The computational complexity and the experimental results demonstrate that the proposed algorithms can be implemented in real time.< >
doi_str_mv 10.1109/9.210141
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28230707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>210141</ieee_id><sourcerecordid>26009811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-eb0efdc5da71b059cab491c94ad541a134eb8707433c7fea5b025f8bf37b526b3</originalsourceid><addsrcrecordid>eNqN0ctLxDAQBvAgCq4P8OypBxEvXTN5tIm3ZfEFC170XJJ0qtFuW5Pu4v73Vrrs1T2FIT--gfkIuQA6BaD6Vk8ZUBBwQCYgpUqZZPyQTCgFlWqmsmNyEuPnMGZCwISoWWm63q8xCa1te--StY8rUyd9MO7LN-93Sf-BbdgkpikT_Okw-CU2fTwjR5WpI55v31Py9nD_On9KFy-Pz_PZInVCsz5FS7EqnSxNDpZK7YwVGpwWppQCDHCBVuU0F5y7vEIjLWWyUrbiuZUss_yUXI-5XWi_Vxj7Yumjw7o2DbarWDClciYk7AEZp8Om_2FGqVawR6LUOqOcDvBmhC60MQasim64kgmbAmjx10qhi7GVgV5tM010pq6CaZyPOy8ypYZqBnY5Mo-Iu99txi_36pLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25996030</pqid></control><display><type>article</type><title>Adaptive robotic visual tracking: theory and experiments</title><source>IEEE Electronic Library (IEL)</source><creator>Papanikolopoulos, N.P. ; Khosla, P.K.</creator><creatorcontrib>Papanikolopoulos, N.P. ; Khosla, P.K.</creatorcontrib><description>The use of a vision sensor in the feedback loop is addressed within the controlled active vision framework. Algorithms are proposed for the solution of the robotic (eye-in-hand configuration) visual tracking and servoing problem. Visual tracking is stated as a problem of combining control with computer vision. The sum-of-squared differences optical flow is used to compute the vector of discrete displacements. The displacements are fed to an adaptive controller (self-tuning regulator) that creates commands for a robot control system. The procedure is based on the online estimation of the relative distance of the target from the camera, but only partial knowledge of the relative distance is required, obviating the need for offline calibration. Three different adaptive control schemes have been implemented, both in simulation and in experiments. The computational complexity and the experimental results demonstrate that the proposed algorithms can be implemented in real time.&lt; &gt;</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.210141</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive control ; Applied sciences ; Computer science; control theory; systems ; Computer vision ; Control theory. Systems ; Displacement control ; Exact sciences and technology ; Feedback loop ; Image motion analysis ; Optical computing ; Optical feedback ; Optical sensors ; Programmable control ; Robot sensing systems ; Robotics</subject><ispartof>IEEE transactions on automatic control, 1993-03, Vol.38 (3), p.429-445</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-eb0efdc5da71b059cab491c94ad541a134eb8707433c7fea5b025f8bf37b526b3</citedby><cites>FETCH-LOGICAL-c492t-eb0efdc5da71b059cab491c94ad541a134eb8707433c7fea5b025f8bf37b526b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/210141$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/210141$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4688016$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Papanikolopoulos, N.P.</creatorcontrib><creatorcontrib>Khosla, P.K.</creatorcontrib><title>Adaptive robotic visual tracking: theory and experiments</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The use of a vision sensor in the feedback loop is addressed within the controlled active vision framework. Algorithms are proposed for the solution of the robotic (eye-in-hand configuration) visual tracking and servoing problem. Visual tracking is stated as a problem of combining control with computer vision. The sum-of-squared differences optical flow is used to compute the vector of discrete displacements. The displacements are fed to an adaptive controller (self-tuning regulator) that creates commands for a robot control system. The procedure is based on the online estimation of the relative distance of the target from the camera, but only partial knowledge of the relative distance is required, obviating the need for offline calibration. Three different adaptive control schemes have been implemented, both in simulation and in experiments. The computational complexity and the experimental results demonstrate that the proposed algorithms can be implemented in real time.&lt; &gt;</description><subject>Adaptive control</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>Control theory. Systems</subject><subject>Displacement control</subject><subject>Exact sciences and technology</subject><subject>Feedback loop</subject><subject>Image motion analysis</subject><subject>Optical computing</subject><subject>Optical feedback</subject><subject>Optical sensors</subject><subject>Programmable control</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqN0ctLxDAQBvAgCq4P8OypBxEvXTN5tIm3ZfEFC170XJJ0qtFuW5Pu4v73Vrrs1T2FIT--gfkIuQA6BaD6Vk8ZUBBwQCYgpUqZZPyQTCgFlWqmsmNyEuPnMGZCwISoWWm63q8xCa1te--StY8rUyd9MO7LN-93Sf-BbdgkpikT_Okw-CU2fTwjR5WpI55v31Py9nD_On9KFy-Pz_PZInVCsz5FS7EqnSxNDpZK7YwVGpwWppQCDHCBVuU0F5y7vEIjLWWyUrbiuZUss_yUXI-5XWi_Vxj7Yumjw7o2DbarWDClciYk7AEZp8Om_2FGqVawR6LUOqOcDvBmhC60MQasim64kgmbAmjx10qhi7GVgV5tM010pq6CaZyPOy8ypYZqBnY5Mo-Iu99txi_36pLM</recordid><startdate>19930301</startdate><enddate>19930301</enddate><creator>Papanikolopoulos, N.P.</creator><creator>Khosla, P.K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19930301</creationdate><title>Adaptive robotic visual tracking: theory and experiments</title><author>Papanikolopoulos, N.P. ; Khosla, P.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-eb0efdc5da71b059cab491c94ad541a134eb8707433c7fea5b025f8bf37b526b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Adaptive control</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>Control theory. Systems</topic><topic>Displacement control</topic><topic>Exact sciences and technology</topic><topic>Feedback loop</topic><topic>Image motion analysis</topic><topic>Optical computing</topic><topic>Optical feedback</topic><topic>Optical sensors</topic><topic>Programmable control</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papanikolopoulos, N.P.</creatorcontrib><creatorcontrib>Khosla, P.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Papanikolopoulos, N.P.</au><au>Khosla, P.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive robotic visual tracking: theory and experiments</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1993-03-01</date><risdate>1993</risdate><volume>38</volume><issue>3</issue><spage>429</spage><epage>445</epage><pages>429-445</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The use of a vision sensor in the feedback loop is addressed within the controlled active vision framework. Algorithms are proposed for the solution of the robotic (eye-in-hand configuration) visual tracking and servoing problem. Visual tracking is stated as a problem of combining control with computer vision. The sum-of-squared differences optical flow is used to compute the vector of discrete displacements. The displacements are fed to an adaptive controller (self-tuning regulator) that creates commands for a robot control system. The procedure is based on the online estimation of the relative distance of the target from the camera, but only partial knowledge of the relative distance is required, obviating the need for offline calibration. Three different adaptive control schemes have been implemented, both in simulation and in experiments. The computational complexity and the experimental results demonstrate that the proposed algorithms can be implemented in real time.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.210141</doi><tpages>17</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1993-03, Vol.38 (3), p.429-445
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_28230707
source IEEE Electronic Library (IEL)
subjects Adaptive control
Applied sciences
Computer science
control theory
systems
Computer vision
Control theory. Systems
Displacement control
Exact sciences and technology
Feedback loop
Image motion analysis
Optical computing
Optical feedback
Optical sensors
Programmable control
Robot sensing systems
Robotics
title Adaptive robotic visual tracking: theory and experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20robotic%20visual%20tracking:%20theory%20and%20experiments&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Papanikolopoulos,%20N.P.&rft.date=1993-03-01&rft.volume=38&rft.issue=3&rft.spage=429&rft.epage=445&rft.pages=429-445&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.210141&rft_dat=%3Cproquest_RIE%3E26009811%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25996030&rft_id=info:pmid/&rft_ieee_id=210141&rfr_iscdi=true