qTPI: A quasi-toxicity probability interval design for phase I trials with multiple-grade toxicities

The common terminology criteria for adverse events by the National Cancer Institute has greatly facilitated the revolution of drug development and an increasing number of Phase I trials have started to collect multiple-grade toxicity endpoints. Appropriate and yet transparent Phase I statistical des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research 2023-07, Vol.32 (7), p.1389-1402
Hauptverfasser: Ling, Haodong, Shi, Haolun, Yuan, Nan, Ji, Yuan, Lin, Xiaolei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1402
container_issue 7
container_start_page 1389
container_title Statistical methods in medical research
container_volume 32
creator Ling, Haodong
Shi, Haolun
Yuan, Nan
Ji, Yuan
Lin, Xiaolei
description The common terminology criteria for adverse events by the National Cancer Institute has greatly facilitated the revolution of drug development and an increasing number of Phase I trials have started to collect multiple-grade toxicity endpoints. Appropriate and yet transparent Phase I statistical designs for multiple-grade toxicities are therefore in great needs. In this article, we propose a quasi-toxicity probability interval (qTPI) design that incorporates a quasi-continuous measure of the toxicity probability ( q T P ) into the Bayesian theoretic framework of the interval based designs. Multiple-grade toxicity outcomes of each patient are mapped to q T P according to a severity weight matrix. Dose–toxicity curve underlying the dosing decisions in the qTPI design is continuously updated using accumulating trial data. Numerical simulations investigating the operating characteristics of qTPI show that qTPI achieved better safety, accuracy and reliability compared to designs that rely on binary toxicity data. Furthermore, parameter elicitation in qTPI is simple and does not involve multiple hypothetical cohorts specification. Finally, a hypothetical soft tissue sarcoma trial with six toxicity types and grade 0 to grade 4 severity grades is illustrated with patient-by-patient dose allocation under the qTPI design.
doi_str_mv 10.1177/09622802231176034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2823043553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09622802231176034</sage_id><sourcerecordid>2823043553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-fc383a9096de3ef2600e92be5b86252490bbf6fd99e04eba4240fffcfc0a89a13</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMotlZ_gBcJePGydTbJfnkrxY9CQQ_1vGR3J23KfrTJrtp_b5ZWBcVTJuSZJy8zhFz6MPb9KLqFJGQsBsa4u4bAxREZ-iKKPOBcHJNh_-71wICcWbsGgAhEckoGPGJR7Md8SIrt4mV2Ryd020mrvbb50Llud3RjmkxmuuxrXbdo3mRJC7R6WVPVGLpZSYt0RlujZWnpu25XtOrKVm9K9JZGFkgPLo32nJwoR-HF4RyR14f7xfTJmz8_zqaTuZdzBq2nch5zmbjUBXJULATAhGUYZHHIAiYSyDIVqiJJEARmUjABSqlc5SDjRPp8RG72Xpd-26Ft00rbHMtS1th0NmUx4yB4EHCHXv9C101napfOUaEIGGOiF_p7KjeNtQZVujG6kmaX-pD2K0j_rMD1XB3MXVZh8d3xNXMHjPeAlUv8-fZ_4yd0Do5r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864522241</pqid></control><display><type>article</type><title>qTPI: A quasi-toxicity probability interval design for phase I trials with multiple-grade toxicities</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>SAGE Complete</source><creator>Ling, Haodong ; Shi, Haolun ; Yuan, Nan ; Ji, Yuan ; Lin, Xiaolei</creator><creatorcontrib>Ling, Haodong ; Shi, Haolun ; Yuan, Nan ; Ji, Yuan ; Lin, Xiaolei</creatorcontrib><description>The common terminology criteria for adverse events by the National Cancer Institute has greatly facilitated the revolution of drug development and an increasing number of Phase I trials have started to collect multiple-grade toxicity endpoints. Appropriate and yet transparent Phase I statistical designs for multiple-grade toxicities are therefore in great needs. In this article, we propose a quasi-toxicity probability interval (qTPI) design that incorporates a quasi-continuous measure of the toxicity probability ( q T P ) into the Bayesian theoretic framework of the interval based designs. Multiple-grade toxicity outcomes of each patient are mapped to q T P according to a severity weight matrix. Dose–toxicity curve underlying the dosing decisions in the qTPI design is continuously updated using accumulating trial data. Numerical simulations investigating the operating characteristics of qTPI show that qTPI achieved better safety, accuracy and reliability compared to designs that rely on binary toxicity data. Furthermore, parameter elicitation in qTPI is simple and does not involve multiple hypothetical cohorts specification. Finally, a hypothetical soft tissue sarcoma trial with six toxicity types and grade 0 to grade 4 severity grades is illustrated with patient-by-patient dose allocation under the qTPI design.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/09622802231176034</identifier><identifier>PMID: 37278183</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Bayesian analysis ; Cancer ; Critical incidents ; Dosage ; Drug development ; Elicitation ; Probability ; Reliability ; Sarcoma ; Soft tissues ; Specification ; Statistical analysis ; Terminology ; Toxicity</subject><ispartof>Statistical methods in medical research, 2023-07, Vol.32 (7), p.1389-1402</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-fc383a9096de3ef2600e92be5b86252490bbf6fd99e04eba4240fffcfc0a89a13</cites><orcidid>0000-0003-4712-5567 ; 0000-0003-2463-1272 ; 0000-0001-6983-8416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09622802231176034$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09622802231176034$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,30976,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37278183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ling, Haodong</creatorcontrib><creatorcontrib>Shi, Haolun</creatorcontrib><creatorcontrib>Yuan, Nan</creatorcontrib><creatorcontrib>Ji, Yuan</creatorcontrib><creatorcontrib>Lin, Xiaolei</creatorcontrib><title>qTPI: A quasi-toxicity probability interval design for phase I trials with multiple-grade toxicities</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>The common terminology criteria for adverse events by the National Cancer Institute has greatly facilitated the revolution of drug development and an increasing number of Phase I trials have started to collect multiple-grade toxicity endpoints. Appropriate and yet transparent Phase I statistical designs for multiple-grade toxicities are therefore in great needs. In this article, we propose a quasi-toxicity probability interval (qTPI) design that incorporates a quasi-continuous measure of the toxicity probability ( q T P ) into the Bayesian theoretic framework of the interval based designs. Multiple-grade toxicity outcomes of each patient are mapped to q T P according to a severity weight matrix. Dose–toxicity curve underlying the dosing decisions in the qTPI design is continuously updated using accumulating trial data. Numerical simulations investigating the operating characteristics of qTPI show that qTPI achieved better safety, accuracy and reliability compared to designs that rely on binary toxicity data. Furthermore, parameter elicitation in qTPI is simple and does not involve multiple hypothetical cohorts specification. Finally, a hypothetical soft tissue sarcoma trial with six toxicity types and grade 0 to grade 4 severity grades is illustrated with patient-by-patient dose allocation under the qTPI design.</description><subject>Bayesian analysis</subject><subject>Cancer</subject><subject>Critical incidents</subject><subject>Dosage</subject><subject>Drug development</subject><subject>Elicitation</subject><subject>Probability</subject><subject>Reliability</subject><subject>Sarcoma</subject><subject>Soft tissues</subject><subject>Specification</subject><subject>Statistical analysis</subject><subject>Terminology</subject><subject>Toxicity</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kU1LAzEQhoMotlZ_gBcJePGydTbJfnkrxY9CQQ_1vGR3J23KfrTJrtp_b5ZWBcVTJuSZJy8zhFz6MPb9KLqFJGQsBsa4u4bAxREZ-iKKPOBcHJNh_-71wICcWbsGgAhEckoGPGJR7Md8SIrt4mV2Ryd020mrvbb50Llud3RjmkxmuuxrXbdo3mRJC7R6WVPVGLpZSYt0RlujZWnpu25XtOrKVm9K9JZGFkgPLo32nJwoR-HF4RyR14f7xfTJmz8_zqaTuZdzBq2nch5zmbjUBXJULATAhGUYZHHIAiYSyDIVqiJJEARmUjABSqlc5SDjRPp8RG72Xpd-26Ft00rbHMtS1th0NmUx4yB4EHCHXv9C101napfOUaEIGGOiF_p7KjeNtQZVujG6kmaX-pD2K0j_rMD1XB3MXVZh8d3xNXMHjPeAlUv8-fZ_4yd0Do5r</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Ling, Haodong</creator><creator>Shi, Haolun</creator><creator>Yuan, Nan</creator><creator>Ji, Yuan</creator><creator>Lin, Xiaolei</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4712-5567</orcidid><orcidid>https://orcid.org/0000-0003-2463-1272</orcidid><orcidid>https://orcid.org/0000-0001-6983-8416</orcidid></search><sort><creationdate>20230701</creationdate><title>qTPI: A quasi-toxicity probability interval design for phase I trials with multiple-grade toxicities</title><author>Ling, Haodong ; Shi, Haolun ; Yuan, Nan ; Ji, Yuan ; Lin, Xiaolei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-fc383a9096de3ef2600e92be5b86252490bbf6fd99e04eba4240fffcfc0a89a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian analysis</topic><topic>Cancer</topic><topic>Critical incidents</topic><topic>Dosage</topic><topic>Drug development</topic><topic>Elicitation</topic><topic>Probability</topic><topic>Reliability</topic><topic>Sarcoma</topic><topic>Soft tissues</topic><topic>Specification</topic><topic>Statistical analysis</topic><topic>Terminology</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Haodong</creatorcontrib><creatorcontrib>Shi, Haolun</creatorcontrib><creatorcontrib>Yuan, Nan</creatorcontrib><creatorcontrib>Ji, Yuan</creatorcontrib><creatorcontrib>Lin, Xiaolei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Haodong</au><au>Shi, Haolun</au><au>Yuan, Nan</au><au>Ji, Yuan</au><au>Lin, Xiaolei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>qTPI: A quasi-toxicity probability interval design for phase I trials with multiple-grade toxicities</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>32</volume><issue>7</issue><spage>1389</spage><epage>1402</epage><pages>1389-1402</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>The common terminology criteria for adverse events by the National Cancer Institute has greatly facilitated the revolution of drug development and an increasing number of Phase I trials have started to collect multiple-grade toxicity endpoints. Appropriate and yet transparent Phase I statistical designs for multiple-grade toxicities are therefore in great needs. In this article, we propose a quasi-toxicity probability interval (qTPI) design that incorporates a quasi-continuous measure of the toxicity probability ( q T P ) into the Bayesian theoretic framework of the interval based designs. Multiple-grade toxicity outcomes of each patient are mapped to q T P according to a severity weight matrix. Dose–toxicity curve underlying the dosing decisions in the qTPI design is continuously updated using accumulating trial data. Numerical simulations investigating the operating characteristics of qTPI show that qTPI achieved better safety, accuracy and reliability compared to designs that rely on binary toxicity data. Furthermore, parameter elicitation in qTPI is simple and does not involve multiple hypothetical cohorts specification. Finally, a hypothetical soft tissue sarcoma trial with six toxicity types and grade 0 to grade 4 severity grades is illustrated with patient-by-patient dose allocation under the qTPI design.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>37278183</pmid><doi>10.1177/09622802231176034</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4712-5567</orcidid><orcidid>https://orcid.org/0000-0003-2463-1272</orcidid><orcidid>https://orcid.org/0000-0001-6983-8416</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0962-2802
ispartof Statistical methods in medical research, 2023-07, Vol.32 (7), p.1389-1402
issn 0962-2802
1477-0334
language eng
recordid cdi_proquest_miscellaneous_2823043553
source Applied Social Sciences Index & Abstracts (ASSIA); SAGE Complete
subjects Bayesian analysis
Cancer
Critical incidents
Dosage
Drug development
Elicitation
Probability
Reliability
Sarcoma
Soft tissues
Specification
Statistical analysis
Terminology
Toxicity
title qTPI: A quasi-toxicity probability interval design for phase I trials with multiple-grade toxicities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=qTPI:%20A%20quasi-toxicity%20probability%20interval%20design%20for%20phase%20I%20trials%20with%20multiple-grade%20toxicities&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Ling,%20Haodong&rft.date=2023-07-01&rft.volume=32&rft.issue=7&rft.spage=1389&rft.epage=1402&rft.pages=1389-1402&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/09622802231176034&rft_dat=%3Cproquest_cross%3E2823043553%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864522241&rft_id=info:pmid/37278183&rft_sage_id=10.1177_09622802231176034&rfr_iscdi=true