Macrocycle Self-Assembly Hydrogel for High-Efficient Oil-Water Separation

Supramolecular hydrogels involved macrocycles have been explored widely in recent years, but it remains challenging to develop hydrogel based on solitary macrocycle with super gelation capability. Here, the construction of lantern[3 ]arene-based hydrogel with low critical gelation concentration (0.0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-10, Vol.19 (40), p.e2301934-e2301934
Hauptverfasser: Li, Sheng-Hua, Li, Bin-Bin, Zhao, Xue-Lin, Wu, Huang, Chai, Rui-Lin, Li, Guang-Yue, Zhu, Di, He, Guangrui, Zhang, Hai-Fu, Xie, Ke-Ke, Cheng, Bowen, Zhao, Qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2301934
container_issue 40
container_start_page e2301934
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Li, Sheng-Hua
Li, Bin-Bin
Zhao, Xue-Lin
Wu, Huang
Chai, Rui-Lin
Li, Guang-Yue
Zhu, Di
He, Guangrui
Zhang, Hai-Fu
Xie, Ke-Ke
Cheng, Bowen
Zhao, Qian
description Supramolecular hydrogels involved macrocycles have been explored widely in recent years, but it remains challenging to develop hydrogel based on solitary macrocycle with super gelation capability. Here, the construction of lantern[3 ]arene-based hydrogel with low critical gelation concentration (0.05 wt%), which can be used for efficient oil-water separation, is reported. The lantern[3 ]arenes self-assemble into hydrogen-bonded organic nanoribbons, which intertwine into entangled fibers to form hydrogel. This hydrogel which exhibits reversible pH-responsiveness characteristics can be coated on stainless-steel mesh by in situ sol-gel transformation. The resultant mesh exhibits excellent oil-water separation efficiency (>99%) and flux (>6 × 10 L m h ). This lantern[3 ]arene-based hydrogel not only sheds additional light on the gelation mechanisms for supramolecular hydrogels, but also extends the application of macrocycle-based hydrogels as functional interfacial materials.
doi_str_mv 10.1002/smll.202301934
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2822706687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872277312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-540885eeb99739c09bd7a1252391065213619d2ceacaaac699c4535bf432c1b93</originalsourceid><addsrcrecordid>eNpdkDFPwzAQhS0EoqWwMqJILCwpti-J47GqCq1U1AEQY-Q4l5LKSYqdDPn3uGrpwHRv-N7T6SPkntEpo5Q_u9qYKaccKJMQXZAxSxiEScrl5TkzOiI3zu0oBcYjcU1GILhgqYQxWb0pbVs9aIPBO5oynDmHdW6GYDkUtt2iCcrWBstq-x0uyrLSFTZdsKlM-KU6tL6zV1Z1VdvckqtSGYd3pzshny-Lj_kyXG9eV_PZOtTAoQvjiKZpjJhLKUBqKvNCKMZjDpLRJOYMEiYLrlFppZROpNRRDHFeRsA1yyVMyNNxd2_bnx5dl9WV02iMarDtXcZTzgVNklR49PEfumt72_jvPCU8JrwQT02PlBfhnMUy29uqVnbIGM0OkrOD5Ows2RceTrN9XmNxxv-swi9gdHX5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872277312</pqid></control><display><type>article</type><title>Macrocycle Self-Assembly Hydrogel for High-Efficient Oil-Water Separation</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Li, Sheng-Hua ; Li, Bin-Bin ; Zhao, Xue-Lin ; Wu, Huang ; Chai, Rui-Lin ; Li, Guang-Yue ; Zhu, Di ; He, Guangrui ; Zhang, Hai-Fu ; Xie, Ke-Ke ; Cheng, Bowen ; Zhao, Qian</creator><creatorcontrib>Li, Sheng-Hua ; Li, Bin-Bin ; Zhao, Xue-Lin ; Wu, Huang ; Chai, Rui-Lin ; Li, Guang-Yue ; Zhu, Di ; He, Guangrui ; Zhang, Hai-Fu ; Xie, Ke-Ke ; Cheng, Bowen ; Zhao, Qian</creatorcontrib><description>Supramolecular hydrogels involved macrocycles have been explored widely in recent years, but it remains challenging to develop hydrogel based on solitary macrocycle with super gelation capability. Here, the construction of lantern[3 ]arene-based hydrogel with low critical gelation concentration (0.05 wt%), which can be used for efficient oil-water separation, is reported. The lantern[3 ]arenes self-assemble into hydrogen-bonded organic nanoribbons, which intertwine into entangled fibers to form hydrogel. This hydrogel which exhibits reversible pH-responsiveness characteristics can be coated on stainless-steel mesh by in situ sol-gel transformation. The resultant mesh exhibits excellent oil-water separation efficiency (&gt;99%) and flux (&gt;6 × 10 L m h ). This lantern[3 ]arene-based hydrogel not only sheds additional light on the gelation mechanisms for supramolecular hydrogels, but also extends the application of macrocycle-based hydrogels as functional interfacial materials.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202301934</identifier><identifier>PMID: 37271893</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aromatic compounds ; Gelation ; Hydrogels ; Nanoribbons ; Nanotechnology ; Self-assembly ; Separation ; Sol-gel processes ; Stainless steels</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-10, Vol.19 (40), p.e2301934-e2301934</ispartof><rights>2023 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-540885eeb99739c09bd7a1252391065213619d2ceacaaac699c4535bf432c1b93</citedby><cites>FETCH-LOGICAL-c323t-540885eeb99739c09bd7a1252391065213619d2ceacaaac699c4535bf432c1b93</cites><orcidid>0000-0003-0408-0864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37271893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Sheng-Hua</creatorcontrib><creatorcontrib>Li, Bin-Bin</creatorcontrib><creatorcontrib>Zhao, Xue-Lin</creatorcontrib><creatorcontrib>Wu, Huang</creatorcontrib><creatorcontrib>Chai, Rui-Lin</creatorcontrib><creatorcontrib>Li, Guang-Yue</creatorcontrib><creatorcontrib>Zhu, Di</creatorcontrib><creatorcontrib>He, Guangrui</creatorcontrib><creatorcontrib>Zhang, Hai-Fu</creatorcontrib><creatorcontrib>Xie, Ke-Ke</creatorcontrib><creatorcontrib>Cheng, Bowen</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><title>Macrocycle Self-Assembly Hydrogel for High-Efficient Oil-Water Separation</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Supramolecular hydrogels involved macrocycles have been explored widely in recent years, but it remains challenging to develop hydrogel based on solitary macrocycle with super gelation capability. Here, the construction of lantern[3 ]arene-based hydrogel with low critical gelation concentration (0.05 wt%), which can be used for efficient oil-water separation, is reported. The lantern[3 ]arenes self-assemble into hydrogen-bonded organic nanoribbons, which intertwine into entangled fibers to form hydrogel. This hydrogel which exhibits reversible pH-responsiveness characteristics can be coated on stainless-steel mesh by in situ sol-gel transformation. The resultant mesh exhibits excellent oil-water separation efficiency (&gt;99%) and flux (&gt;6 × 10 L m h ). This lantern[3 ]arene-based hydrogel not only sheds additional light on the gelation mechanisms for supramolecular hydrogels, but also extends the application of macrocycle-based hydrogels as functional interfacial materials.</description><subject>Aromatic compounds</subject><subject>Gelation</subject><subject>Hydrogels</subject><subject>Nanoribbons</subject><subject>Nanotechnology</subject><subject>Self-assembly</subject><subject>Separation</subject><subject>Sol-gel processes</subject><subject>Stainless steels</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkDFPwzAQhS0EoqWwMqJILCwpti-J47GqCq1U1AEQY-Q4l5LKSYqdDPn3uGrpwHRv-N7T6SPkntEpo5Q_u9qYKaccKJMQXZAxSxiEScrl5TkzOiI3zu0oBcYjcU1GILhgqYQxWb0pbVs9aIPBO5oynDmHdW6GYDkUtt2iCcrWBstq-x0uyrLSFTZdsKlM-KU6tL6zV1Z1VdvckqtSGYd3pzshny-Lj_kyXG9eV_PZOtTAoQvjiKZpjJhLKUBqKvNCKMZjDpLRJOYMEiYLrlFppZROpNRRDHFeRsA1yyVMyNNxd2_bnx5dl9WV02iMarDtXcZTzgVNklR49PEfumt72_jvPCU8JrwQT02PlBfhnMUy29uqVnbIGM0OkrOD5Ows2RceTrN9XmNxxv-swi9gdHX5</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Li, Sheng-Hua</creator><creator>Li, Bin-Bin</creator><creator>Zhao, Xue-Lin</creator><creator>Wu, Huang</creator><creator>Chai, Rui-Lin</creator><creator>Li, Guang-Yue</creator><creator>Zhu, Di</creator><creator>He, Guangrui</creator><creator>Zhang, Hai-Fu</creator><creator>Xie, Ke-Ke</creator><creator>Cheng, Bowen</creator><creator>Zhao, Qian</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0408-0864</orcidid></search><sort><creationdate>20231001</creationdate><title>Macrocycle Self-Assembly Hydrogel for High-Efficient Oil-Water Separation</title><author>Li, Sheng-Hua ; Li, Bin-Bin ; Zhao, Xue-Lin ; Wu, Huang ; Chai, Rui-Lin ; Li, Guang-Yue ; Zhu, Di ; He, Guangrui ; Zhang, Hai-Fu ; Xie, Ke-Ke ; Cheng, Bowen ; Zhao, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-540885eeb99739c09bd7a1252391065213619d2ceacaaac699c4535bf432c1b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aromatic compounds</topic><topic>Gelation</topic><topic>Hydrogels</topic><topic>Nanoribbons</topic><topic>Nanotechnology</topic><topic>Self-assembly</topic><topic>Separation</topic><topic>Sol-gel processes</topic><topic>Stainless steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Sheng-Hua</creatorcontrib><creatorcontrib>Li, Bin-Bin</creatorcontrib><creatorcontrib>Zhao, Xue-Lin</creatorcontrib><creatorcontrib>Wu, Huang</creatorcontrib><creatorcontrib>Chai, Rui-Lin</creatorcontrib><creatorcontrib>Li, Guang-Yue</creatorcontrib><creatorcontrib>Zhu, Di</creatorcontrib><creatorcontrib>He, Guangrui</creatorcontrib><creatorcontrib>Zhang, Hai-Fu</creatorcontrib><creatorcontrib>Xie, Ke-Ke</creatorcontrib><creatorcontrib>Cheng, Bowen</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Sheng-Hua</au><au>Li, Bin-Bin</au><au>Zhao, Xue-Lin</au><au>Wu, Huang</au><au>Chai, Rui-Lin</au><au>Li, Guang-Yue</au><au>Zhu, Di</au><au>He, Guangrui</au><au>Zhang, Hai-Fu</au><au>Xie, Ke-Ke</au><au>Cheng, Bowen</au><au>Zhao, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macrocycle Self-Assembly Hydrogel for High-Efficient Oil-Water Separation</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>19</volume><issue>40</issue><spage>e2301934</spage><epage>e2301934</epage><pages>e2301934-e2301934</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Supramolecular hydrogels involved macrocycles have been explored widely in recent years, but it remains challenging to develop hydrogel based on solitary macrocycle with super gelation capability. Here, the construction of lantern[3 ]arene-based hydrogel with low critical gelation concentration (0.05 wt%), which can be used for efficient oil-water separation, is reported. The lantern[3 ]arenes self-assemble into hydrogen-bonded organic nanoribbons, which intertwine into entangled fibers to form hydrogel. This hydrogel which exhibits reversible pH-responsiveness characteristics can be coated on stainless-steel mesh by in situ sol-gel transformation. The resultant mesh exhibits excellent oil-water separation efficiency (&gt;99%) and flux (&gt;6 × 10 L m h ). This lantern[3 ]arene-based hydrogel not only sheds additional light on the gelation mechanisms for supramolecular hydrogels, but also extends the application of macrocycle-based hydrogels as functional interfacial materials.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37271893</pmid><doi>10.1002/smll.202301934</doi><orcidid>https://orcid.org/0000-0003-0408-0864</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-10, Vol.19 (40), p.e2301934-e2301934
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2822706687
source Wiley Online Library - AutoHoldings Journals
subjects Aromatic compounds
Gelation
Hydrogels
Nanoribbons
Nanotechnology
Self-assembly
Separation
Sol-gel processes
Stainless steels
title Macrocycle Self-Assembly Hydrogel for High-Efficient Oil-Water Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macrocycle%20Self-Assembly%20Hydrogel%20for%20High-Efficient%20Oil-Water%20Separation&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Li,%20Sheng-Hua&rft.date=2023-10-01&rft.volume=19&rft.issue=40&rft.spage=e2301934&rft.epage=e2301934&rft.pages=e2301934-e2301934&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202301934&rft_dat=%3Cproquest_cross%3E2872277312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2872277312&rft_id=info:pmid/37271893&rfr_iscdi=true