Macrocycle Self-Assembly Hydrogel for High-Efficient Oil-Water Separation
Supramolecular hydrogels involved macrocycles have been explored widely in recent years, but it remains challenging to develop hydrogel based on solitary macrocycle with super gelation capability. Here, the construction of lantern[3 ]arene-based hydrogel with low critical gelation concentration (0.0...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-10, Vol.19 (40), p.e2301934-e2301934 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2301934 |
---|---|
container_issue | 40 |
container_start_page | e2301934 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Li, Sheng-Hua Li, Bin-Bin Zhao, Xue-Lin Wu, Huang Chai, Rui-Lin Li, Guang-Yue Zhu, Di He, Guangrui Zhang, Hai-Fu Xie, Ke-Ke Cheng, Bowen Zhao, Qian |
description | Supramolecular hydrogels involved macrocycles have been explored widely in recent years, but it remains challenging to develop hydrogel based on solitary macrocycle with super gelation capability. Here, the construction of lantern[3
]arene-based hydrogel with low critical gelation concentration (0.05 wt%), which can be used for efficient oil-water separation, is reported. The lantern[3
]arenes self-assemble into hydrogen-bonded organic nanoribbons, which intertwine into entangled fibers to form hydrogel. This hydrogel which exhibits reversible pH-responsiveness characteristics can be coated on stainless-steel mesh by in situ sol-gel transformation. The resultant mesh exhibits excellent oil-water separation efficiency (>99%) and flux (>6 × 10
L m
h
). This lantern[3
]arene-based hydrogel not only sheds additional light on the gelation mechanisms for supramolecular hydrogels, but also extends the application of macrocycle-based hydrogels as functional interfacial materials. |
doi_str_mv | 10.1002/smll.202301934 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2822706687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872277312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-540885eeb99739c09bd7a1252391065213619d2ceacaaac699c4535bf432c1b93</originalsourceid><addsrcrecordid>eNpdkDFPwzAQhS0EoqWwMqJILCwpti-J47GqCq1U1AEQY-Q4l5LKSYqdDPn3uGrpwHRv-N7T6SPkntEpo5Q_u9qYKaccKJMQXZAxSxiEScrl5TkzOiI3zu0oBcYjcU1GILhgqYQxWb0pbVs9aIPBO5oynDmHdW6GYDkUtt2iCcrWBstq-x0uyrLSFTZdsKlM-KU6tL6zV1Z1VdvckqtSGYd3pzshny-Lj_kyXG9eV_PZOtTAoQvjiKZpjJhLKUBqKvNCKMZjDpLRJOYMEiYLrlFppZROpNRRDHFeRsA1yyVMyNNxd2_bnx5dl9WV02iMarDtXcZTzgVNklR49PEfumt72_jvPCU8JrwQT02PlBfhnMUy29uqVnbIGM0OkrOD5Ows2RceTrN9XmNxxv-swi9gdHX5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872277312</pqid></control><display><type>article</type><title>Macrocycle Self-Assembly Hydrogel for High-Efficient Oil-Water Separation</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Li, Sheng-Hua ; Li, Bin-Bin ; Zhao, Xue-Lin ; Wu, Huang ; Chai, Rui-Lin ; Li, Guang-Yue ; Zhu, Di ; He, Guangrui ; Zhang, Hai-Fu ; Xie, Ke-Ke ; Cheng, Bowen ; Zhao, Qian</creator><creatorcontrib>Li, Sheng-Hua ; Li, Bin-Bin ; Zhao, Xue-Lin ; Wu, Huang ; Chai, Rui-Lin ; Li, Guang-Yue ; Zhu, Di ; He, Guangrui ; Zhang, Hai-Fu ; Xie, Ke-Ke ; Cheng, Bowen ; Zhao, Qian</creatorcontrib><description>Supramolecular hydrogels involved macrocycles have been explored widely in recent years, but it remains challenging to develop hydrogel based on solitary macrocycle with super gelation capability. Here, the construction of lantern[3
]arene-based hydrogel with low critical gelation concentration (0.05 wt%), which can be used for efficient oil-water separation, is reported. The lantern[3
]arenes self-assemble into hydrogen-bonded organic nanoribbons, which intertwine into entangled fibers to form hydrogel. This hydrogel which exhibits reversible pH-responsiveness characteristics can be coated on stainless-steel mesh by in situ sol-gel transformation. The resultant mesh exhibits excellent oil-water separation efficiency (>99%) and flux (>6 × 10
L m
h
). This lantern[3
]arene-based hydrogel not only sheds additional light on the gelation mechanisms for supramolecular hydrogels, but also extends the application of macrocycle-based hydrogels as functional interfacial materials.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202301934</identifier><identifier>PMID: 37271893</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aromatic compounds ; Gelation ; Hydrogels ; Nanoribbons ; Nanotechnology ; Self-assembly ; Separation ; Sol-gel processes ; Stainless steels</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-10, Vol.19 (40), p.e2301934-e2301934</ispartof><rights>2023 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-540885eeb99739c09bd7a1252391065213619d2ceacaaac699c4535bf432c1b93</citedby><cites>FETCH-LOGICAL-c323t-540885eeb99739c09bd7a1252391065213619d2ceacaaac699c4535bf432c1b93</cites><orcidid>0000-0003-0408-0864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37271893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Sheng-Hua</creatorcontrib><creatorcontrib>Li, Bin-Bin</creatorcontrib><creatorcontrib>Zhao, Xue-Lin</creatorcontrib><creatorcontrib>Wu, Huang</creatorcontrib><creatorcontrib>Chai, Rui-Lin</creatorcontrib><creatorcontrib>Li, Guang-Yue</creatorcontrib><creatorcontrib>Zhu, Di</creatorcontrib><creatorcontrib>He, Guangrui</creatorcontrib><creatorcontrib>Zhang, Hai-Fu</creatorcontrib><creatorcontrib>Xie, Ke-Ke</creatorcontrib><creatorcontrib>Cheng, Bowen</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><title>Macrocycle Self-Assembly Hydrogel for High-Efficient Oil-Water Separation</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Supramolecular hydrogels involved macrocycles have been explored widely in recent years, but it remains challenging to develop hydrogel based on solitary macrocycle with super gelation capability. Here, the construction of lantern[3
]arene-based hydrogel with low critical gelation concentration (0.05 wt%), which can be used for efficient oil-water separation, is reported. The lantern[3
]arenes self-assemble into hydrogen-bonded organic nanoribbons, which intertwine into entangled fibers to form hydrogel. This hydrogel which exhibits reversible pH-responsiveness characteristics can be coated on stainless-steel mesh by in situ sol-gel transformation. The resultant mesh exhibits excellent oil-water separation efficiency (>99%) and flux (>6 × 10
L m
h
). This lantern[3
]arene-based hydrogel not only sheds additional light on the gelation mechanisms for supramolecular hydrogels, but also extends the application of macrocycle-based hydrogels as functional interfacial materials.</description><subject>Aromatic compounds</subject><subject>Gelation</subject><subject>Hydrogels</subject><subject>Nanoribbons</subject><subject>Nanotechnology</subject><subject>Self-assembly</subject><subject>Separation</subject><subject>Sol-gel processes</subject><subject>Stainless steels</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkDFPwzAQhS0EoqWwMqJILCwpti-J47GqCq1U1AEQY-Q4l5LKSYqdDPn3uGrpwHRv-N7T6SPkntEpo5Q_u9qYKaccKJMQXZAxSxiEScrl5TkzOiI3zu0oBcYjcU1GILhgqYQxWb0pbVs9aIPBO5oynDmHdW6GYDkUtt2iCcrWBstq-x0uyrLSFTZdsKlM-KU6tL6zV1Z1VdvckqtSGYd3pzshny-Lj_kyXG9eV_PZOtTAoQvjiKZpjJhLKUBqKvNCKMZjDpLRJOYMEiYLrlFppZROpNRRDHFeRsA1yyVMyNNxd2_bnx5dl9WV02iMarDtXcZTzgVNklR49PEfumt72_jvPCU8JrwQT02PlBfhnMUy29uqVnbIGM0OkrOD5Ows2RceTrN9XmNxxv-swi9gdHX5</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Li, Sheng-Hua</creator><creator>Li, Bin-Bin</creator><creator>Zhao, Xue-Lin</creator><creator>Wu, Huang</creator><creator>Chai, Rui-Lin</creator><creator>Li, Guang-Yue</creator><creator>Zhu, Di</creator><creator>He, Guangrui</creator><creator>Zhang, Hai-Fu</creator><creator>Xie, Ke-Ke</creator><creator>Cheng, Bowen</creator><creator>Zhao, Qian</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0408-0864</orcidid></search><sort><creationdate>20231001</creationdate><title>Macrocycle Self-Assembly Hydrogel for High-Efficient Oil-Water Separation</title><author>Li, Sheng-Hua ; Li, Bin-Bin ; Zhao, Xue-Lin ; Wu, Huang ; Chai, Rui-Lin ; Li, Guang-Yue ; Zhu, Di ; He, Guangrui ; Zhang, Hai-Fu ; Xie, Ke-Ke ; Cheng, Bowen ; Zhao, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-540885eeb99739c09bd7a1252391065213619d2ceacaaac699c4535bf432c1b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aromatic compounds</topic><topic>Gelation</topic><topic>Hydrogels</topic><topic>Nanoribbons</topic><topic>Nanotechnology</topic><topic>Self-assembly</topic><topic>Separation</topic><topic>Sol-gel processes</topic><topic>Stainless steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Sheng-Hua</creatorcontrib><creatorcontrib>Li, Bin-Bin</creatorcontrib><creatorcontrib>Zhao, Xue-Lin</creatorcontrib><creatorcontrib>Wu, Huang</creatorcontrib><creatorcontrib>Chai, Rui-Lin</creatorcontrib><creatorcontrib>Li, Guang-Yue</creatorcontrib><creatorcontrib>Zhu, Di</creatorcontrib><creatorcontrib>He, Guangrui</creatorcontrib><creatorcontrib>Zhang, Hai-Fu</creatorcontrib><creatorcontrib>Xie, Ke-Ke</creatorcontrib><creatorcontrib>Cheng, Bowen</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Sheng-Hua</au><au>Li, Bin-Bin</au><au>Zhao, Xue-Lin</au><au>Wu, Huang</au><au>Chai, Rui-Lin</au><au>Li, Guang-Yue</au><au>Zhu, Di</au><au>He, Guangrui</au><au>Zhang, Hai-Fu</au><au>Xie, Ke-Ke</au><au>Cheng, Bowen</au><au>Zhao, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macrocycle Self-Assembly Hydrogel for High-Efficient Oil-Water Separation</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>19</volume><issue>40</issue><spage>e2301934</spage><epage>e2301934</epage><pages>e2301934-e2301934</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Supramolecular hydrogels involved macrocycles have been explored widely in recent years, but it remains challenging to develop hydrogel based on solitary macrocycle with super gelation capability. Here, the construction of lantern[3
]arene-based hydrogel with low critical gelation concentration (0.05 wt%), which can be used for efficient oil-water separation, is reported. The lantern[3
]arenes self-assemble into hydrogen-bonded organic nanoribbons, which intertwine into entangled fibers to form hydrogel. This hydrogel which exhibits reversible pH-responsiveness characteristics can be coated on stainless-steel mesh by in situ sol-gel transformation. The resultant mesh exhibits excellent oil-water separation efficiency (>99%) and flux (>6 × 10
L m
h
). This lantern[3
]arene-based hydrogel not only sheds additional light on the gelation mechanisms for supramolecular hydrogels, but also extends the application of macrocycle-based hydrogels as functional interfacial materials.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37271893</pmid><doi>10.1002/smll.202301934</doi><orcidid>https://orcid.org/0000-0003-0408-0864</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-10, Vol.19 (40), p.e2301934-e2301934 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2822706687 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Aromatic compounds Gelation Hydrogels Nanoribbons Nanotechnology Self-assembly Separation Sol-gel processes Stainless steels |
title | Macrocycle Self-Assembly Hydrogel for High-Efficient Oil-Water Separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macrocycle%20Self-Assembly%20Hydrogel%20for%20High-Efficient%20Oil-Water%20Separation&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Li,%20Sheng-Hua&rft.date=2023-10-01&rft.volume=19&rft.issue=40&rft.spage=e2301934&rft.epage=e2301934&rft.pages=e2301934-e2301934&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202301934&rft_dat=%3Cproquest_cross%3E2872277312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2872277312&rft_id=info:pmid/37271893&rfr_iscdi=true |