Prediction of Shock-Refractory Ventricular Fibrillation During Resuscitation of Out-of-Hospital Cardiac Arrest
Out-of-hospital cardiac arrest due to shock-refractory ventricular fibrillation (VF) is associated with relatively poor survival. The ability to predict refractory VF (requiring ≥3 shocks) in advance of repeated shock failure could enable preemptive targeted interventions aimed at improving outcome,...
Gespeichert in:
Veröffentlicht in: | Circulation (New York, N.Y.) N.Y.), 2023-07, Vol.148 (4), p.327-335 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 335 |
---|---|
container_issue | 4 |
container_start_page | 327 |
container_title | Circulation (New York, N.Y.) |
container_volume | 148 |
creator | Coult, Jason Yang, Betty Y. Kwok, Heemun Kutz, J. Nathan Boyle, Patrick M. Blackwood, Jennifer Rea, Thomas D. Kudenchuk, Peter J. |
description | Out-of-hospital cardiac arrest due to shock-refractory ventricular fibrillation (VF) is associated with relatively poor survival. The ability to predict refractory VF (requiring ≥3 shocks) in advance of repeated shock failure could enable preemptive targeted interventions aimed at improving outcome, such as earlier administration of antiarrhythmics, reconsideration of epinephrine use or dosage, changes in shock delivery strategy, or expedited invasive treatments.
We conducted a cohort study of VF out-of-hospital cardiac arrest to develop an ECG-based algorithm to predict patients with refractory VF. Patients with available defibrillator recordings were randomized 80%/20% into training/test groups. A random forest classifier applied to 3-s ECG segments immediately before and 1 minute after the initial shock during cardiopulmonary resuscitation was used to predict the need for ≥3 shocks based on singular value decompositions of ECG wavelet transforms. Performance was quantified by area under the receiver operating characteristic curve.
Of 1376 patients with VF out-of-hospital cardiac arrest, 311 (23%) were female, 864 (63%) experienced refractory VF, and 591 (43%) achieved functional neurological survival. Total shock count was associated with decreasing likelihood of functional neurological survival, with a relative risk of 0.95 (95% CI, 0.93-0.97) for each successive shock ( |
doi_str_mv | 10.1161/CIRCULATIONAHA.122.063651 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2822376614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822376614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4134-dde2930cd110d057e9e8e2d199c1305b10a643c5250f50359b6332b608300b403</originalsourceid><addsrcrecordid>eNpVkd9v0zAQgC0EYmXwL6DwxovL2Wc7zWMUNlqpoqhsvFqO41CzNC52omn_PR7dkHg63em7H_5MyAcGS8YU-9Rs9s3ttr7Z7L7W63rJOF-CQiXZC7JgkgsqJFYvyQIAKloi5xfkTUq_cqqwlK_JBZZciQrVgozfouu8nXwYi9AX3w_B3tG966OxU4gPxQ83TtHbeTCxuPZt9MNg_sKf5-jHn8XepTlZP5nnCbt5oqGn65BOuToUjYmdN7aoY3Rpekte9WZI7t1TvCS311c3zZpud182Tb2lVjAUtOscrxBsxxh0IEtXuZXjHasqyxBky8AogVZyCb0ElFWrEHmrYIUArQC8JB_Pc08x_J7zYn30ybp8_OjCnDRfcY6lUkxktDqjNoaUouv1KfqjiQ-agX7Urf_XrbNufdade98_rZnbo-v-dT77zYA4A_dhmFxMd8N876I-ODNMB50_BBBYSTlwhDK_hj6WBP4BiPGMqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822376614</pqid></control><display><type>article</type><title>Prediction of Shock-Refractory Ventricular Fibrillation During Resuscitation of Out-of-Hospital Cardiac Arrest</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Ovid Autoload</source><creator>Coult, Jason ; Yang, Betty Y. ; Kwok, Heemun ; Kutz, J. Nathan ; Boyle, Patrick M. ; Blackwood, Jennifer ; Rea, Thomas D. ; Kudenchuk, Peter J.</creator><creatorcontrib>Coult, Jason ; Yang, Betty Y. ; Kwok, Heemun ; Kutz, J. Nathan ; Boyle, Patrick M. ; Blackwood, Jennifer ; Rea, Thomas D. ; Kudenchuk, Peter J.</creatorcontrib><description>Out-of-hospital cardiac arrest due to shock-refractory ventricular fibrillation (VF) is associated with relatively poor survival. The ability to predict refractory VF (requiring ≥3 shocks) in advance of repeated shock failure could enable preemptive targeted interventions aimed at improving outcome, such as earlier administration of antiarrhythmics, reconsideration of epinephrine use or dosage, changes in shock delivery strategy, or expedited invasive treatments.
We conducted a cohort study of VF out-of-hospital cardiac arrest to develop an ECG-based algorithm to predict patients with refractory VF. Patients with available defibrillator recordings were randomized 80%/20% into training/test groups. A random forest classifier applied to 3-s ECG segments immediately before and 1 minute after the initial shock during cardiopulmonary resuscitation was used to predict the need for ≥3 shocks based on singular value decompositions of ECG wavelet transforms. Performance was quantified by area under the receiver operating characteristic curve.
Of 1376 patients with VF out-of-hospital cardiac arrest, 311 (23%) were female, 864 (63%) experienced refractory VF, and 591 (43%) achieved functional neurological survival. Total shock count was associated with decreasing likelihood of functional neurological survival, with a relative risk of 0.95 (95% CI, 0.93-0.97) for each successive shock (
<0.001). In the 275 test patients, the area under the receiver operating characteristic curve for predicting refractory VF was 0.85 (95% CI, 0.79-0.89), with specificity of 91%, sensitivity of 63%, and a positive likelihood ratio of 6.7.
A machine learning algorithm using ECGs surrounding the initial shock predicts patients likely to experience refractory VF, and could enable rescuers to preemptively target interventions to potentially improve resuscitation outcome.</description><identifier>ISSN: 0009-7322</identifier><identifier>EISSN: 1524-4539</identifier><identifier>DOI: 10.1161/CIRCULATIONAHA.122.063651</identifier><identifier>PMID: 37264936</identifier><language>eng</language><publisher>United States: Lippincott Williams & Wilkins</publisher><subject>Cardiopulmonary Resuscitation - adverse effects ; Cohort Studies ; Electric Countershock - adverse effects ; Female ; Humans ; Male ; Out-of-Hospital Cardiac Arrest - complications ; Out-of-Hospital Cardiac Arrest - diagnosis ; Out-of-Hospital Cardiac Arrest - therapy ; Ventricular Fibrillation - complications ; Ventricular Fibrillation - diagnosis ; Ventricular Fibrillation - therapy</subject><ispartof>Circulation (New York, N.Y.), 2023-07, Vol.148 (4), p.327-335</ispartof><rights>Lippincott Williams & Wilkins</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4134-dde2930cd110d057e9e8e2d199c1305b10a643c5250f50359b6332b608300b403</citedby><cites>FETCH-LOGICAL-c4134-dde2930cd110d057e9e8e2d199c1305b10a643c5250f50359b6332b608300b403</cites><orcidid>0000-0002-7050-0380 ; 0000-0001-9048-1239 ; 0000-0003-0197-925X ; 0000-0003-0568-0968 ; 0000-0003-1855-1102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3688,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37264936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Coult, Jason</creatorcontrib><creatorcontrib>Yang, Betty Y.</creatorcontrib><creatorcontrib>Kwok, Heemun</creatorcontrib><creatorcontrib>Kutz, J. Nathan</creatorcontrib><creatorcontrib>Boyle, Patrick M.</creatorcontrib><creatorcontrib>Blackwood, Jennifer</creatorcontrib><creatorcontrib>Rea, Thomas D.</creatorcontrib><creatorcontrib>Kudenchuk, Peter J.</creatorcontrib><title>Prediction of Shock-Refractory Ventricular Fibrillation During Resuscitation of Out-of-Hospital Cardiac Arrest</title><title>Circulation (New York, N.Y.)</title><addtitle>Circulation</addtitle><description>Out-of-hospital cardiac arrest due to shock-refractory ventricular fibrillation (VF) is associated with relatively poor survival. The ability to predict refractory VF (requiring ≥3 shocks) in advance of repeated shock failure could enable preemptive targeted interventions aimed at improving outcome, such as earlier administration of antiarrhythmics, reconsideration of epinephrine use or dosage, changes in shock delivery strategy, or expedited invasive treatments.
We conducted a cohort study of VF out-of-hospital cardiac arrest to develop an ECG-based algorithm to predict patients with refractory VF. Patients with available defibrillator recordings were randomized 80%/20% into training/test groups. A random forest classifier applied to 3-s ECG segments immediately before and 1 minute after the initial shock during cardiopulmonary resuscitation was used to predict the need for ≥3 shocks based on singular value decompositions of ECG wavelet transforms. Performance was quantified by area under the receiver operating characteristic curve.
Of 1376 patients with VF out-of-hospital cardiac arrest, 311 (23%) were female, 864 (63%) experienced refractory VF, and 591 (43%) achieved functional neurological survival. Total shock count was associated with decreasing likelihood of functional neurological survival, with a relative risk of 0.95 (95% CI, 0.93-0.97) for each successive shock (
<0.001). In the 275 test patients, the area under the receiver operating characteristic curve for predicting refractory VF was 0.85 (95% CI, 0.79-0.89), with specificity of 91%, sensitivity of 63%, and a positive likelihood ratio of 6.7.
A machine learning algorithm using ECGs surrounding the initial shock predicts patients likely to experience refractory VF, and could enable rescuers to preemptively target interventions to potentially improve resuscitation outcome.</description><subject>Cardiopulmonary Resuscitation - adverse effects</subject><subject>Cohort Studies</subject><subject>Electric Countershock - adverse effects</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Out-of-Hospital Cardiac Arrest - complications</subject><subject>Out-of-Hospital Cardiac Arrest - diagnosis</subject><subject>Out-of-Hospital Cardiac Arrest - therapy</subject><subject>Ventricular Fibrillation - complications</subject><subject>Ventricular Fibrillation - diagnosis</subject><subject>Ventricular Fibrillation - therapy</subject><issn>0009-7322</issn><issn>1524-4539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkd9v0zAQgC0EYmXwL6DwxovL2Wc7zWMUNlqpoqhsvFqO41CzNC52omn_PR7dkHg63em7H_5MyAcGS8YU-9Rs9s3ttr7Z7L7W63rJOF-CQiXZC7JgkgsqJFYvyQIAKloi5xfkTUq_cqqwlK_JBZZciQrVgozfouu8nXwYi9AX3w_B3tG966OxU4gPxQ83TtHbeTCxuPZt9MNg_sKf5-jHn8XepTlZP5nnCbt5oqGn65BOuToUjYmdN7aoY3Rpekte9WZI7t1TvCS311c3zZpud182Tb2lVjAUtOscrxBsxxh0IEtXuZXjHasqyxBky8AogVZyCb0ElFWrEHmrYIUArQC8JB_Pc08x_J7zYn30ybp8_OjCnDRfcY6lUkxktDqjNoaUouv1KfqjiQ-agX7Urf_XrbNufdade98_rZnbo-v-dT77zYA4A_dhmFxMd8N876I-ODNMB50_BBBYSTlwhDK_hj6WBP4BiPGMqg</recordid><startdate>20230725</startdate><enddate>20230725</enddate><creator>Coult, Jason</creator><creator>Yang, Betty Y.</creator><creator>Kwok, Heemun</creator><creator>Kutz, J. Nathan</creator><creator>Boyle, Patrick M.</creator><creator>Blackwood, Jennifer</creator><creator>Rea, Thomas D.</creator><creator>Kudenchuk, Peter J.</creator><general>Lippincott Williams & Wilkins</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7050-0380</orcidid><orcidid>https://orcid.org/0000-0001-9048-1239</orcidid><orcidid>https://orcid.org/0000-0003-0197-925X</orcidid><orcidid>https://orcid.org/0000-0003-0568-0968</orcidid><orcidid>https://orcid.org/0000-0003-1855-1102</orcidid></search><sort><creationdate>20230725</creationdate><title>Prediction of Shock-Refractory Ventricular Fibrillation During Resuscitation of Out-of-Hospital Cardiac Arrest</title><author>Coult, Jason ; Yang, Betty Y. ; Kwok, Heemun ; Kutz, J. Nathan ; Boyle, Patrick M. ; Blackwood, Jennifer ; Rea, Thomas D. ; Kudenchuk, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4134-dde2930cd110d057e9e8e2d199c1305b10a643c5250f50359b6332b608300b403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cardiopulmonary Resuscitation - adverse effects</topic><topic>Cohort Studies</topic><topic>Electric Countershock - adverse effects</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Out-of-Hospital Cardiac Arrest - complications</topic><topic>Out-of-Hospital Cardiac Arrest - diagnosis</topic><topic>Out-of-Hospital Cardiac Arrest - therapy</topic><topic>Ventricular Fibrillation - complications</topic><topic>Ventricular Fibrillation - diagnosis</topic><topic>Ventricular Fibrillation - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coult, Jason</creatorcontrib><creatorcontrib>Yang, Betty Y.</creatorcontrib><creatorcontrib>Kwok, Heemun</creatorcontrib><creatorcontrib>Kutz, J. Nathan</creatorcontrib><creatorcontrib>Boyle, Patrick M.</creatorcontrib><creatorcontrib>Blackwood, Jennifer</creatorcontrib><creatorcontrib>Rea, Thomas D.</creatorcontrib><creatorcontrib>Kudenchuk, Peter J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coult, Jason</au><au>Yang, Betty Y.</au><au>Kwok, Heemun</au><au>Kutz, J. Nathan</au><au>Boyle, Patrick M.</au><au>Blackwood, Jennifer</au><au>Rea, Thomas D.</au><au>Kudenchuk, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Shock-Refractory Ventricular Fibrillation During Resuscitation of Out-of-Hospital Cardiac Arrest</atitle><jtitle>Circulation (New York, N.Y.)</jtitle><addtitle>Circulation</addtitle><date>2023-07-25</date><risdate>2023</risdate><volume>148</volume><issue>4</issue><spage>327</spage><epage>335</epage><pages>327-335</pages><issn>0009-7322</issn><eissn>1524-4539</eissn><abstract>Out-of-hospital cardiac arrest due to shock-refractory ventricular fibrillation (VF) is associated with relatively poor survival. The ability to predict refractory VF (requiring ≥3 shocks) in advance of repeated shock failure could enable preemptive targeted interventions aimed at improving outcome, such as earlier administration of antiarrhythmics, reconsideration of epinephrine use or dosage, changes in shock delivery strategy, or expedited invasive treatments.
We conducted a cohort study of VF out-of-hospital cardiac arrest to develop an ECG-based algorithm to predict patients with refractory VF. Patients with available defibrillator recordings were randomized 80%/20% into training/test groups. A random forest classifier applied to 3-s ECG segments immediately before and 1 minute after the initial shock during cardiopulmonary resuscitation was used to predict the need for ≥3 shocks based on singular value decompositions of ECG wavelet transforms. Performance was quantified by area under the receiver operating characteristic curve.
Of 1376 patients with VF out-of-hospital cardiac arrest, 311 (23%) were female, 864 (63%) experienced refractory VF, and 591 (43%) achieved functional neurological survival. Total shock count was associated with decreasing likelihood of functional neurological survival, with a relative risk of 0.95 (95% CI, 0.93-0.97) for each successive shock (
<0.001). In the 275 test patients, the area under the receiver operating characteristic curve for predicting refractory VF was 0.85 (95% CI, 0.79-0.89), with specificity of 91%, sensitivity of 63%, and a positive likelihood ratio of 6.7.
A machine learning algorithm using ECGs surrounding the initial shock predicts patients likely to experience refractory VF, and could enable rescuers to preemptively target interventions to potentially improve resuscitation outcome.</abstract><cop>United States</cop><pub>Lippincott Williams & Wilkins</pub><pmid>37264936</pmid><doi>10.1161/CIRCULATIONAHA.122.063651</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7050-0380</orcidid><orcidid>https://orcid.org/0000-0001-9048-1239</orcidid><orcidid>https://orcid.org/0000-0003-0197-925X</orcidid><orcidid>https://orcid.org/0000-0003-0568-0968</orcidid><orcidid>https://orcid.org/0000-0003-1855-1102</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-7322 |
ispartof | Circulation (New York, N.Y.), 2023-07, Vol.148 (4), p.327-335 |
issn | 0009-7322 1524-4539 |
language | eng |
recordid | cdi_proquest_miscellaneous_2822376614 |
source | MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Ovid Autoload |
subjects | Cardiopulmonary Resuscitation - adverse effects Cohort Studies Electric Countershock - adverse effects Female Humans Male Out-of-Hospital Cardiac Arrest - complications Out-of-Hospital Cardiac Arrest - diagnosis Out-of-Hospital Cardiac Arrest - therapy Ventricular Fibrillation - complications Ventricular Fibrillation - diagnosis Ventricular Fibrillation - therapy |
title | Prediction of Shock-Refractory Ventricular Fibrillation During Resuscitation of Out-of-Hospital Cardiac Arrest |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Shock-Refractory%20Ventricular%20Fibrillation%20During%20Resuscitation%20of%20Out-of-Hospital%20Cardiac%20Arrest&rft.jtitle=Circulation%20(New%20York,%20N.Y.)&rft.au=Coult,%20Jason&rft.date=2023-07-25&rft.volume=148&rft.issue=4&rft.spage=327&rft.epage=335&rft.pages=327-335&rft.issn=0009-7322&rft.eissn=1524-4539&rft_id=info:doi/10.1161/CIRCULATIONAHA.122.063651&rft_dat=%3Cproquest_cross%3E2822376614%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822376614&rft_id=info:pmid/37264936&rfr_iscdi=true |