Compact and transparent fuzzy models and classifiers through iterative complexity reduction

In our previous work (2000) we showed that genetic algorithms (GAs) provide a powerful tool to increase the accuracy of fuzzy models for both systems modeling and classification. In addition to these results, we explore the GA to find redundancy in the fuzzy model for the purpose of model reduction....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2001-08, Vol.9 (4), p.516-524
Hauptverfasser: Roubos, H., Setnes, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 524
container_issue 4
container_start_page 516
container_title IEEE transactions on fuzzy systems
container_volume 9
creator Roubos, H.
Setnes, M.
description In our previous work (2000) we showed that genetic algorithms (GAs) provide a powerful tool to increase the accuracy of fuzzy models for both systems modeling and classification. In addition to these results, we explore the GA to find redundancy in the fuzzy model for the purpose of model reduction. An aggregated similarity measure is applied to search for redundancy in the rule base description. As a result, we propose an iterative fuzzy identification technique starting with data-based fuzzy clustering with an overestimated number of local models. The GA is then applied to find redundancy among the local models with a criterion based on maximal accuracy and maximal set similarity. After the reduction steps, the GA is applied with another criterion searching for minimal set similarity and maximal accuracy. This results in an automatic identification scheme with fuzzy clustering, rule base simplification and constrained genetic optimization with low-human intervention. The proposed modeling approach is then demonstrated for a system identification and a classification problem.
doi_str_mv 10.1109/91.940965
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28214518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>940965</ieee_id><sourcerecordid>914659070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-f138dcc362bce05d055a804f7bbe1b9dddbd722bf8173ca0569c15292627de0e3</originalsourceid><addsrcrecordid>eNp90TtPwzAQAGALgUQpDKxMEQOIIeXsxEk8ooqXhMQCE0Pk2BfqKomL7SDaX09oKgYGpjvpPt3p7gg5pTCjFMS1oDORgsj4HplQkdIYIEn3hxyyJM5yyA7JkfdLAJpyWkzI29y2K6lCJDsdBSc7v5IOuxDV_WazjlqrsfHbomqk96Y26HwUFs7274vIBHQymE-M1NCmwS8T1pFD3atgbHdMDmrZeDzZxSl5vbt9mT_ET8_3j_Obp1ilSR7imiaFVirJWKUQuAbOZQFpnVcV0kporSudM1bVBc0TJYFnQlHOBMtYrhEwmZLLse_K2Y8efShb4xU2jezQ9r4UNM24gBwGefGvZAXb3mWA53_g0vauG7YohUiogILzAV2NSDnrvcO6XDnTSrcuKZQ_3xgml-M3Bns2WoOIv25X_AZFAYXm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>993190855</pqid></control><display><type>article</type><title>Compact and transparent fuzzy models and classifiers through iterative complexity reduction</title><source>IEEE Electronic Library (IEL)</source><creator>Roubos, H. ; Setnes, M.</creator><creatorcontrib>Roubos, H. ; Setnes, M.</creatorcontrib><description>In our previous work (2000) we showed that genetic algorithms (GAs) provide a powerful tool to increase the accuracy of fuzzy models for both systems modeling and classification. In addition to these results, we explore the GA to find redundancy in the fuzzy model for the purpose of model reduction. An aggregated similarity measure is applied to search for redundancy in the rule base description. As a result, we propose an iterative fuzzy identification technique starting with data-based fuzzy clustering with an overestimated number of local models. The GA is then applied to find redundancy among the local models with a criterion based on maximal accuracy and maximal set similarity. After the reduction steps, the GA is applied with another criterion searching for minimal set similarity and maximal accuracy. This results in an automatic identification scheme with fuzzy clustering, rule base simplification and constrained genetic optimization with low-human intervention. The proposed modeling approach is then demonstrated for a system identification and a classification problem.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/91.940965</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Constraint optimization ; Function approximation ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Fuzzy sets ; Fuzzy systems ; Genetic algorithms ; Humans ; Mathematical models ; Power system modeling ; Reduced order systems ; Redundancy ; Similarity ; Studies ; System identification</subject><ispartof>IEEE transactions on fuzzy systems, 2001-08, Vol.9 (4), p.516-524</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-f138dcc362bce05d055a804f7bbe1b9dddbd722bf8173ca0569c15292627de0e3</citedby><cites>FETCH-LOGICAL-c437t-f138dcc362bce05d055a804f7bbe1b9dddbd722bf8173ca0569c15292627de0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/940965$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/940965$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roubos, H.</creatorcontrib><creatorcontrib>Setnes, M.</creatorcontrib><title>Compact and transparent fuzzy models and classifiers through iterative complexity reduction</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>In our previous work (2000) we showed that genetic algorithms (GAs) provide a powerful tool to increase the accuracy of fuzzy models for both systems modeling and classification. In addition to these results, we explore the GA to find redundancy in the fuzzy model for the purpose of model reduction. An aggregated similarity measure is applied to search for redundancy in the rule base description. As a result, we propose an iterative fuzzy identification technique starting with data-based fuzzy clustering with an overestimated number of local models. The GA is then applied to find redundancy among the local models with a criterion based on maximal accuracy and maximal set similarity. After the reduction steps, the GA is applied with another criterion searching for minimal set similarity and maximal accuracy. This results in an automatic identification scheme with fuzzy clustering, rule base simplification and constrained genetic optimization with low-human intervention. The proposed modeling approach is then demonstrated for a system identification and a classification problem.</description><subject>Accuracy</subject><subject>Constraint optimization</subject><subject>Function approximation</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>Power system modeling</subject><subject>Reduced order systems</subject><subject>Redundancy</subject><subject>Similarity</subject><subject>Studies</subject><subject>System identification</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90TtPwzAQAGALgUQpDKxMEQOIIeXsxEk8ooqXhMQCE0Pk2BfqKomL7SDaX09oKgYGpjvpPt3p7gg5pTCjFMS1oDORgsj4HplQkdIYIEn3hxyyJM5yyA7JkfdLAJpyWkzI29y2K6lCJDsdBSc7v5IOuxDV_WazjlqrsfHbomqk96Y26HwUFs7274vIBHQymE-M1NCmwS8T1pFD3atgbHdMDmrZeDzZxSl5vbt9mT_ET8_3j_Obp1ilSR7imiaFVirJWKUQuAbOZQFpnVcV0kporSudM1bVBc0TJYFnQlHOBMtYrhEwmZLLse_K2Y8efShb4xU2jezQ9r4UNM24gBwGefGvZAXb3mWA53_g0vauG7YohUiogILzAV2NSDnrvcO6XDnTSrcuKZQ_3xgml-M3Bns2WoOIv25X_AZFAYXm</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Roubos, H.</creator><creator>Setnes, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20010801</creationdate><title>Compact and transparent fuzzy models and classifiers through iterative complexity reduction</title><author>Roubos, H. ; Setnes, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-f138dcc362bce05d055a804f7bbe1b9dddbd722bf8173ca0569c15292627de0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Accuracy</topic><topic>Constraint optimization</topic><topic>Function approximation</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>Power system modeling</topic><topic>Reduced order systems</topic><topic>Redundancy</topic><topic>Similarity</topic><topic>Studies</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roubos, H.</creatorcontrib><creatorcontrib>Setnes, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roubos, H.</au><au>Setnes, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact and transparent fuzzy models and classifiers through iterative complexity reduction</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2001-08-01</date><risdate>2001</risdate><volume>9</volume><issue>4</issue><spage>516</spage><epage>524</epage><pages>516-524</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>In our previous work (2000) we showed that genetic algorithms (GAs) provide a powerful tool to increase the accuracy of fuzzy models for both systems modeling and classification. In addition to these results, we explore the GA to find redundancy in the fuzzy model for the purpose of model reduction. An aggregated similarity measure is applied to search for redundancy in the rule base description. As a result, we propose an iterative fuzzy identification technique starting with data-based fuzzy clustering with an overestimated number of local models. The GA is then applied to find redundancy among the local models with a criterion based on maximal accuracy and maximal set similarity. After the reduction steps, the GA is applied with another criterion searching for minimal set similarity and maximal accuracy. This results in an automatic identification scheme with fuzzy clustering, rule base simplification and constrained genetic optimization with low-human intervention. The proposed modeling approach is then demonstrated for a system identification and a classification problem.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/91.940965</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2001-08, Vol.9 (4), p.516-524
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_miscellaneous_28214518
source IEEE Electronic Library (IEL)
subjects Accuracy
Constraint optimization
Function approximation
Fuzzy
Fuzzy logic
Fuzzy set theory
Fuzzy sets
Fuzzy systems
Genetic algorithms
Humans
Mathematical models
Power system modeling
Reduced order systems
Redundancy
Similarity
Studies
System identification
title Compact and transparent fuzzy models and classifiers through iterative complexity reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20and%20transparent%20fuzzy%20models%20and%20classifiers%20through%20iterative%20complexity%20reduction&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Roubos,%20H.&rft.date=2001-08-01&rft.volume=9&rft.issue=4&rft.spage=516&rft.epage=524&rft.pages=516-524&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/91.940965&rft_dat=%3Cproquest_RIE%3E914659070%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=993190855&rft_id=info:pmid/&rft_ieee_id=940965&rfr_iscdi=true