Compact and transparent fuzzy models and classifiers through iterative complexity reduction
In our previous work (2000) we showed that genetic algorithms (GAs) provide a powerful tool to increase the accuracy of fuzzy models for both systems modeling and classification. In addition to these results, we explore the GA to find redundancy in the fuzzy model for the purpose of model reduction....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on fuzzy systems 2001-08, Vol.9 (4), p.516-524 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 524 |
---|---|
container_issue | 4 |
container_start_page | 516 |
container_title | IEEE transactions on fuzzy systems |
container_volume | 9 |
creator | Roubos, H. Setnes, M. |
description | In our previous work (2000) we showed that genetic algorithms (GAs) provide a powerful tool to increase the accuracy of fuzzy models for both systems modeling and classification. In addition to these results, we explore the GA to find redundancy in the fuzzy model for the purpose of model reduction. An aggregated similarity measure is applied to search for redundancy in the rule base description. As a result, we propose an iterative fuzzy identification technique starting with data-based fuzzy clustering with an overestimated number of local models. The GA is then applied to find redundancy among the local models with a criterion based on maximal accuracy and maximal set similarity. After the reduction steps, the GA is applied with another criterion searching for minimal set similarity and maximal accuracy. This results in an automatic identification scheme with fuzzy clustering, rule base simplification and constrained genetic optimization with low-human intervention. The proposed modeling approach is then demonstrated for a system identification and a classification problem. |
doi_str_mv | 10.1109/91.940965 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28214518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>940965</ieee_id><sourcerecordid>914659070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-f138dcc362bce05d055a804f7bbe1b9dddbd722bf8173ca0569c15292627de0e3</originalsourceid><addsrcrecordid>eNp90TtPwzAQAGALgUQpDKxMEQOIIeXsxEk8ooqXhMQCE0Pk2BfqKomL7SDaX09oKgYGpjvpPt3p7gg5pTCjFMS1oDORgsj4HplQkdIYIEn3hxyyJM5yyA7JkfdLAJpyWkzI29y2K6lCJDsdBSc7v5IOuxDV_WazjlqrsfHbomqk96Y26HwUFs7274vIBHQymE-M1NCmwS8T1pFD3atgbHdMDmrZeDzZxSl5vbt9mT_ET8_3j_Obp1ilSR7imiaFVirJWKUQuAbOZQFpnVcV0kporSudM1bVBc0TJYFnQlHOBMtYrhEwmZLLse_K2Y8efShb4xU2jezQ9r4UNM24gBwGefGvZAXb3mWA53_g0vauG7YohUiogILzAV2NSDnrvcO6XDnTSrcuKZQ_3xgml-M3Bns2WoOIv25X_AZFAYXm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>993190855</pqid></control><display><type>article</type><title>Compact and transparent fuzzy models and classifiers through iterative complexity reduction</title><source>IEEE Electronic Library (IEL)</source><creator>Roubos, H. ; Setnes, M.</creator><creatorcontrib>Roubos, H. ; Setnes, M.</creatorcontrib><description>In our previous work (2000) we showed that genetic algorithms (GAs) provide a powerful tool to increase the accuracy of fuzzy models for both systems modeling and classification. In addition to these results, we explore the GA to find redundancy in the fuzzy model for the purpose of model reduction. An aggregated similarity measure is applied to search for redundancy in the rule base description. As a result, we propose an iterative fuzzy identification technique starting with data-based fuzzy clustering with an overestimated number of local models. The GA is then applied to find redundancy among the local models with a criterion based on maximal accuracy and maximal set similarity. After the reduction steps, the GA is applied with another criterion searching for minimal set similarity and maximal accuracy. This results in an automatic identification scheme with fuzzy clustering, rule base simplification and constrained genetic optimization with low-human intervention. The proposed modeling approach is then demonstrated for a system identification and a classification problem.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/91.940965</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Constraint optimization ; Function approximation ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Fuzzy sets ; Fuzzy systems ; Genetic algorithms ; Humans ; Mathematical models ; Power system modeling ; Reduced order systems ; Redundancy ; Similarity ; Studies ; System identification</subject><ispartof>IEEE transactions on fuzzy systems, 2001-08, Vol.9 (4), p.516-524</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-f138dcc362bce05d055a804f7bbe1b9dddbd722bf8173ca0569c15292627de0e3</citedby><cites>FETCH-LOGICAL-c437t-f138dcc362bce05d055a804f7bbe1b9dddbd722bf8173ca0569c15292627de0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/940965$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/940965$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roubos, H.</creatorcontrib><creatorcontrib>Setnes, M.</creatorcontrib><title>Compact and transparent fuzzy models and classifiers through iterative complexity reduction</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>In our previous work (2000) we showed that genetic algorithms (GAs) provide a powerful tool to increase the accuracy of fuzzy models for both systems modeling and classification. In addition to these results, we explore the GA to find redundancy in the fuzzy model for the purpose of model reduction. An aggregated similarity measure is applied to search for redundancy in the rule base description. As a result, we propose an iterative fuzzy identification technique starting with data-based fuzzy clustering with an overestimated number of local models. The GA is then applied to find redundancy among the local models with a criterion based on maximal accuracy and maximal set similarity. After the reduction steps, the GA is applied with another criterion searching for minimal set similarity and maximal accuracy. This results in an automatic identification scheme with fuzzy clustering, rule base simplification and constrained genetic optimization with low-human intervention. The proposed modeling approach is then demonstrated for a system identification and a classification problem.</description><subject>Accuracy</subject><subject>Constraint optimization</subject><subject>Function approximation</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>Power system modeling</subject><subject>Reduced order systems</subject><subject>Redundancy</subject><subject>Similarity</subject><subject>Studies</subject><subject>System identification</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90TtPwzAQAGALgUQpDKxMEQOIIeXsxEk8ooqXhMQCE0Pk2BfqKomL7SDaX09oKgYGpjvpPt3p7gg5pTCjFMS1oDORgsj4HplQkdIYIEn3hxyyJM5yyA7JkfdLAJpyWkzI29y2K6lCJDsdBSc7v5IOuxDV_WazjlqrsfHbomqk96Y26HwUFs7274vIBHQymE-M1NCmwS8T1pFD3atgbHdMDmrZeDzZxSl5vbt9mT_ET8_3j_Obp1ilSR7imiaFVirJWKUQuAbOZQFpnVcV0kporSudM1bVBc0TJYFnQlHOBMtYrhEwmZLLse_K2Y8efShb4xU2jezQ9r4UNM24gBwGefGvZAXb3mWA53_g0vauG7YohUiogILzAV2NSDnrvcO6XDnTSrcuKZQ_3xgml-M3Bns2WoOIv25X_AZFAYXm</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Roubos, H.</creator><creator>Setnes, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20010801</creationdate><title>Compact and transparent fuzzy models and classifiers through iterative complexity reduction</title><author>Roubos, H. ; Setnes, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-f138dcc362bce05d055a804f7bbe1b9dddbd722bf8173ca0569c15292627de0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Accuracy</topic><topic>Constraint optimization</topic><topic>Function approximation</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>Power system modeling</topic><topic>Reduced order systems</topic><topic>Redundancy</topic><topic>Similarity</topic><topic>Studies</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roubos, H.</creatorcontrib><creatorcontrib>Setnes, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roubos, H.</au><au>Setnes, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact and transparent fuzzy models and classifiers through iterative complexity reduction</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2001-08-01</date><risdate>2001</risdate><volume>9</volume><issue>4</issue><spage>516</spage><epage>524</epage><pages>516-524</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>In our previous work (2000) we showed that genetic algorithms (GAs) provide a powerful tool to increase the accuracy of fuzzy models for both systems modeling and classification. In addition to these results, we explore the GA to find redundancy in the fuzzy model for the purpose of model reduction. An aggregated similarity measure is applied to search for redundancy in the rule base description. As a result, we propose an iterative fuzzy identification technique starting with data-based fuzzy clustering with an overestimated number of local models. The GA is then applied to find redundancy among the local models with a criterion based on maximal accuracy and maximal set similarity. After the reduction steps, the GA is applied with another criterion searching for minimal set similarity and maximal accuracy. This results in an automatic identification scheme with fuzzy clustering, rule base simplification and constrained genetic optimization with low-human intervention. The proposed modeling approach is then demonstrated for a system identification and a classification problem.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/91.940965</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6706 |
ispartof | IEEE transactions on fuzzy systems, 2001-08, Vol.9 (4), p.516-524 |
issn | 1063-6706 1941-0034 |
language | eng |
recordid | cdi_proquest_miscellaneous_28214518 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Constraint optimization Function approximation Fuzzy Fuzzy logic Fuzzy set theory Fuzzy sets Fuzzy systems Genetic algorithms Humans Mathematical models Power system modeling Reduced order systems Redundancy Similarity Studies System identification |
title | Compact and transparent fuzzy models and classifiers through iterative complexity reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20and%20transparent%20fuzzy%20models%20and%20classifiers%20through%20iterative%20complexity%20reduction&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Roubos,%20H.&rft.date=2001-08-01&rft.volume=9&rft.issue=4&rft.spage=516&rft.epage=524&rft.pages=516-524&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/91.940965&rft_dat=%3Cproquest_RIE%3E914659070%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=993190855&rft_id=info:pmid/&rft_ieee_id=940965&rfr_iscdi=true |