Cooperative Rh‑O5/Ni(Fe) Site for Efficient Biomass Upgrading Coupled with H2 Production

Designing efficient and durable bifunctional catalysts for 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) and hydrogen evolution reaction (HER) is desirable for the co-production of biomass-upgraded chemicals and sustainable hydrogen, which is limited by the competitive adsorption of hydro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2023-08, Vol.145 (32), p.17577-17587
Hauptverfasser: Zeng, Lingyou, Chen, Yanju, Sun, Mingzi, Huang, Qizheng, Sun, Kaian, Ma, Jingyuan, Li, Jiong, Tan, Hao, Li, Menggang, Pan, Yuan, Liu, Yunqi, Luo, Mingchuan, Huang, Bolong, Guo, Shaojun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17587
container_issue 32
container_start_page 17577
container_title Journal of the American Chemical Society
container_volume 145
creator Zeng, Lingyou
Chen, Yanju
Sun, Mingzi
Huang, Qizheng
Sun, Kaian
Ma, Jingyuan
Li, Jiong
Tan, Hao
Li, Menggang
Pan, Yuan
Liu, Yunqi
Luo, Mingchuan
Huang, Bolong
Guo, Shaojun
description Designing efficient and durable bifunctional catalysts for 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) and hydrogen evolution reaction (HER) is desirable for the co-production of biomass-upgraded chemicals and sustainable hydrogen, which is limited by the competitive adsorption of hydroxyl species (OHads) and HMF molecules. Here, we report a class of Rh–O5/Ni­(Fe) atomic site on nanoporous mesh-type layered double hydroxides with atomic-scale cooperative adsorption centers for highly active and stable alkaline HMFOR and HER catalysis. A low cell voltage of 1.48 V is required to achieve 100 mA cm–2 in an integrated electrolysis system along with excellent stability (>100 h). Operando infrared and X-ray absorption spectroscopic probes unveil that HMF molecules are selectively adsorbed and activated over the single-atom Rh sites and oxidized by in situ-formed electrophilic OHads species on neighboring Ni sites. Theoretical studies further demonstrate that the strong d–d orbital coupling interactions between atomic-level Rh and surrounding Ni atoms in the special Rh–O5/Ni­(Fe) structure can greatly facilitate surface electronic exchange-and-transfer capabilities with the adsorbates (OHads and HMF molecules) and intermediates for efficient HMFOR and HER. We also reveal that the Fe sites in Rh–O5/Ni­(Fe) structure can promote the electrocatalytic stability of the catalyst. Our findings provide new insights into catalyst design for complex reactions involving competitive adsorptions of multiple intermediates.
doi_str_mv 10.1021/jacs.3c02570
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2821344067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821344067</sourcerecordid><originalsourceid>FETCH-LOGICAL-a221t-bcafbb9fd36dbe366b1af162f4deb1dc986b4e6d0514d30ceef01125d2bcfc453</originalsourceid><addsrcrecordid>eNpF0M1KAzEUBeAgCtbqzgfIsi6mzU1m0ulSh9YKxYrajZshv23KdDJOMrr1FXxFn8QWC64uBy6Hw4fQNZAhEAqjrVBhyBSh2ZicoB5klCQZUH6KeoQQmoxzzs7RRQjbfUxpDj30VnjfmFZE92Hw8-bn63uZjR7dYGZu8IuLBlvf4qm1TjlTR3zn_E6EgFfNuhXa1Wtc-K6pjMafLm7wnOKn1utORefrS3RmRRXM1fH20Wo2fS3myWJ5_1DcLhJBKcREKmGlnFjNuJaGcS5BWODUptpI0GqSc5karkkGqWZEGWMJAM00lcqqNGN9NPjrbVr_3pkQy50LylSVqI3vQklzCixNCR__v-6hyq3v2no_rARSHvjKA1955GO_1uJkYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821344067</pqid></control><display><type>article</type><title>Cooperative Rh‑O5/Ni(Fe) Site for Efficient Biomass Upgrading Coupled with H2 Production</title><source>American Chemical Society Journals</source><creator>Zeng, Lingyou ; Chen, Yanju ; Sun, Mingzi ; Huang, Qizheng ; Sun, Kaian ; Ma, Jingyuan ; Li, Jiong ; Tan, Hao ; Li, Menggang ; Pan, Yuan ; Liu, Yunqi ; Luo, Mingchuan ; Huang, Bolong ; Guo, Shaojun</creator><creatorcontrib>Zeng, Lingyou ; Chen, Yanju ; Sun, Mingzi ; Huang, Qizheng ; Sun, Kaian ; Ma, Jingyuan ; Li, Jiong ; Tan, Hao ; Li, Menggang ; Pan, Yuan ; Liu, Yunqi ; Luo, Mingchuan ; Huang, Bolong ; Guo, Shaojun</creatorcontrib><description>Designing efficient and durable bifunctional catalysts for 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) and hydrogen evolution reaction (HER) is desirable for the co-production of biomass-upgraded chemicals and sustainable hydrogen, which is limited by the competitive adsorption of hydroxyl species (OHads) and HMF molecules. Here, we report a class of Rh–O5/Ni­(Fe) atomic site on nanoporous mesh-type layered double hydroxides with atomic-scale cooperative adsorption centers for highly active and stable alkaline HMFOR and HER catalysis. A low cell voltage of 1.48 V is required to achieve 100 mA cm–2 in an integrated electrolysis system along with excellent stability (&gt;100 h). Operando infrared and X-ray absorption spectroscopic probes unveil that HMF molecules are selectively adsorbed and activated over the single-atom Rh sites and oxidized by in situ-formed electrophilic OHads species on neighboring Ni sites. Theoretical studies further demonstrate that the strong d–d orbital coupling interactions between atomic-level Rh and surrounding Ni atoms in the special Rh–O5/Ni­(Fe) structure can greatly facilitate surface electronic exchange-and-transfer capabilities with the adsorbates (OHads and HMF molecules) and intermediates for efficient HMFOR and HER. We also reveal that the Fe sites in Rh–O5/Ni­(Fe) structure can promote the electrocatalytic stability of the catalyst. Our findings provide new insights into catalyst design for complex reactions involving competitive adsorptions of multiple intermediates.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c02570</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2023-08, Vol.145 (32), p.17577-17587</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5136-7265 ; 0000-0001-6826-9987 ; 0000-0003-4427-6837 ; 0000-0002-2284-236X ; 0000-0002-2526-2002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c02570$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c02570$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Zeng, Lingyou</creatorcontrib><creatorcontrib>Chen, Yanju</creatorcontrib><creatorcontrib>Sun, Mingzi</creatorcontrib><creatorcontrib>Huang, Qizheng</creatorcontrib><creatorcontrib>Sun, Kaian</creatorcontrib><creatorcontrib>Ma, Jingyuan</creatorcontrib><creatorcontrib>Li, Jiong</creatorcontrib><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Li, Menggang</creatorcontrib><creatorcontrib>Pan, Yuan</creatorcontrib><creatorcontrib>Liu, Yunqi</creatorcontrib><creatorcontrib>Luo, Mingchuan</creatorcontrib><creatorcontrib>Huang, Bolong</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><title>Cooperative Rh‑O5/Ni(Fe) Site for Efficient Biomass Upgrading Coupled with H2 Production</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Designing efficient and durable bifunctional catalysts for 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) and hydrogen evolution reaction (HER) is desirable for the co-production of biomass-upgraded chemicals and sustainable hydrogen, which is limited by the competitive adsorption of hydroxyl species (OHads) and HMF molecules. Here, we report a class of Rh–O5/Ni­(Fe) atomic site on nanoporous mesh-type layered double hydroxides with atomic-scale cooperative adsorption centers for highly active and stable alkaline HMFOR and HER catalysis. A low cell voltage of 1.48 V is required to achieve 100 mA cm–2 in an integrated electrolysis system along with excellent stability (&gt;100 h). Operando infrared and X-ray absorption spectroscopic probes unveil that HMF molecules are selectively adsorbed and activated over the single-atom Rh sites and oxidized by in situ-formed electrophilic OHads species on neighboring Ni sites. Theoretical studies further demonstrate that the strong d–d orbital coupling interactions between atomic-level Rh and surrounding Ni atoms in the special Rh–O5/Ni­(Fe) structure can greatly facilitate surface electronic exchange-and-transfer capabilities with the adsorbates (OHads and HMF molecules) and intermediates for efficient HMFOR and HER. We also reveal that the Fe sites in Rh–O5/Ni­(Fe) structure can promote the electrocatalytic stability of the catalyst. Our findings provide new insights into catalyst design for complex reactions involving competitive adsorptions of multiple intermediates.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpF0M1KAzEUBeAgCtbqzgfIsi6mzU1m0ulSh9YKxYrajZshv23KdDJOMrr1FXxFn8QWC64uBy6Hw4fQNZAhEAqjrVBhyBSh2ZicoB5klCQZUH6KeoQQmoxzzs7RRQjbfUxpDj30VnjfmFZE92Hw8-bn63uZjR7dYGZu8IuLBlvf4qm1TjlTR3zn_E6EgFfNuhXa1Wtc-K6pjMafLm7wnOKn1utORefrS3RmRRXM1fH20Wo2fS3myWJ5_1DcLhJBKcREKmGlnFjNuJaGcS5BWODUptpI0GqSc5karkkGqWZEGWMJAM00lcqqNGN9NPjrbVr_3pkQy50LylSVqI3vQklzCixNCR__v-6hyq3v2no_rARSHvjKA1955GO_1uJkYQ</recordid><startdate>20230816</startdate><enddate>20230816</enddate><creator>Zeng, Lingyou</creator><creator>Chen, Yanju</creator><creator>Sun, Mingzi</creator><creator>Huang, Qizheng</creator><creator>Sun, Kaian</creator><creator>Ma, Jingyuan</creator><creator>Li, Jiong</creator><creator>Tan, Hao</creator><creator>Li, Menggang</creator><creator>Pan, Yuan</creator><creator>Liu, Yunqi</creator><creator>Luo, Mingchuan</creator><creator>Huang, Bolong</creator><creator>Guo, Shaojun</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5136-7265</orcidid><orcidid>https://orcid.org/0000-0001-6826-9987</orcidid><orcidid>https://orcid.org/0000-0003-4427-6837</orcidid><orcidid>https://orcid.org/0000-0002-2284-236X</orcidid><orcidid>https://orcid.org/0000-0002-2526-2002</orcidid></search><sort><creationdate>20230816</creationdate><title>Cooperative Rh‑O5/Ni(Fe) Site for Efficient Biomass Upgrading Coupled with H2 Production</title><author>Zeng, Lingyou ; Chen, Yanju ; Sun, Mingzi ; Huang, Qizheng ; Sun, Kaian ; Ma, Jingyuan ; Li, Jiong ; Tan, Hao ; Li, Menggang ; Pan, Yuan ; Liu, Yunqi ; Luo, Mingchuan ; Huang, Bolong ; Guo, Shaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a221t-bcafbb9fd36dbe366b1af162f4deb1dc986b4e6d0514d30ceef01125d2bcfc453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Lingyou</creatorcontrib><creatorcontrib>Chen, Yanju</creatorcontrib><creatorcontrib>Sun, Mingzi</creatorcontrib><creatorcontrib>Huang, Qizheng</creatorcontrib><creatorcontrib>Sun, Kaian</creatorcontrib><creatorcontrib>Ma, Jingyuan</creatorcontrib><creatorcontrib>Li, Jiong</creatorcontrib><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Li, Menggang</creatorcontrib><creatorcontrib>Pan, Yuan</creatorcontrib><creatorcontrib>Liu, Yunqi</creatorcontrib><creatorcontrib>Luo, Mingchuan</creatorcontrib><creatorcontrib>Huang, Bolong</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Lingyou</au><au>Chen, Yanju</au><au>Sun, Mingzi</au><au>Huang, Qizheng</au><au>Sun, Kaian</au><au>Ma, Jingyuan</au><au>Li, Jiong</au><au>Tan, Hao</au><au>Li, Menggang</au><au>Pan, Yuan</au><au>Liu, Yunqi</au><au>Luo, Mingchuan</au><au>Huang, Bolong</au><au>Guo, Shaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooperative Rh‑O5/Ni(Fe) Site for Efficient Biomass Upgrading Coupled with H2 Production</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-08-16</date><risdate>2023</risdate><volume>145</volume><issue>32</issue><spage>17577</spage><epage>17587</epage><pages>17577-17587</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Designing efficient and durable bifunctional catalysts for 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) and hydrogen evolution reaction (HER) is desirable for the co-production of biomass-upgraded chemicals and sustainable hydrogen, which is limited by the competitive adsorption of hydroxyl species (OHads) and HMF molecules. Here, we report a class of Rh–O5/Ni­(Fe) atomic site on nanoporous mesh-type layered double hydroxides with atomic-scale cooperative adsorption centers for highly active and stable alkaline HMFOR and HER catalysis. A low cell voltage of 1.48 V is required to achieve 100 mA cm–2 in an integrated electrolysis system along with excellent stability (&gt;100 h). Operando infrared and X-ray absorption spectroscopic probes unveil that HMF molecules are selectively adsorbed and activated over the single-atom Rh sites and oxidized by in situ-formed electrophilic OHads species on neighboring Ni sites. Theoretical studies further demonstrate that the strong d–d orbital coupling interactions between atomic-level Rh and surrounding Ni atoms in the special Rh–O5/Ni­(Fe) structure can greatly facilitate surface electronic exchange-and-transfer capabilities with the adsorbates (OHads and HMF molecules) and intermediates for efficient HMFOR and HER. We also reveal that the Fe sites in Rh–O5/Ni­(Fe) structure can promote the electrocatalytic stability of the catalyst. Our findings provide new insights into catalyst design for complex reactions involving competitive adsorptions of multiple intermediates.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.3c02570</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5136-7265</orcidid><orcidid>https://orcid.org/0000-0001-6826-9987</orcidid><orcidid>https://orcid.org/0000-0003-4427-6837</orcidid><orcidid>https://orcid.org/0000-0002-2284-236X</orcidid><orcidid>https://orcid.org/0000-0002-2526-2002</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2023-08, Vol.145 (32), p.17577-17587
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2821344067
source American Chemical Society Journals
title Cooperative Rh‑O5/Ni(Fe) Site for Efficient Biomass Upgrading Coupled with H2 Production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooperative%20Rh%E2%80%91O5/Ni(Fe)%20Site%20for%20Efficient%20Biomass%20Upgrading%20Coupled%20with%20H2%20Production&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zeng,%20Lingyou&rft.date=2023-08-16&rft.volume=145&rft.issue=32&rft.spage=17577&rft.epage=17587&rft.pages=17577-17587&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c02570&rft_dat=%3Cproquest_acs_j%3E2821344067%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821344067&rft_id=info:pmid/&rfr_iscdi=true