Cooperative Rh‑O5/Ni(Fe) Site for Efficient Biomass Upgrading Coupled with H2 Production
Designing efficient and durable bifunctional catalysts for 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) and hydrogen evolution reaction (HER) is desirable for the co-production of biomass-upgraded chemicals and sustainable hydrogen, which is limited by the competitive adsorption of hydro...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2023-08, Vol.145 (32), p.17577-17587 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17587 |
---|---|
container_issue | 32 |
container_start_page | 17577 |
container_title | Journal of the American Chemical Society |
container_volume | 145 |
creator | Zeng, Lingyou Chen, Yanju Sun, Mingzi Huang, Qizheng Sun, Kaian Ma, Jingyuan Li, Jiong Tan, Hao Li, Menggang Pan, Yuan Liu, Yunqi Luo, Mingchuan Huang, Bolong Guo, Shaojun |
description | Designing efficient and durable bifunctional catalysts for 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) and hydrogen evolution reaction (HER) is desirable for the co-production of biomass-upgraded chemicals and sustainable hydrogen, which is limited by the competitive adsorption of hydroxyl species (OHads) and HMF molecules. Here, we report a class of Rh–O5/Ni(Fe) atomic site on nanoporous mesh-type layered double hydroxides with atomic-scale cooperative adsorption centers for highly active and stable alkaline HMFOR and HER catalysis. A low cell voltage of 1.48 V is required to achieve 100 mA cm–2 in an integrated electrolysis system along with excellent stability (>100 h). Operando infrared and X-ray absorption spectroscopic probes unveil that HMF molecules are selectively adsorbed and activated over the single-atom Rh sites and oxidized by in situ-formed electrophilic OHads species on neighboring Ni sites. Theoretical studies further demonstrate that the strong d–d orbital coupling interactions between atomic-level Rh and surrounding Ni atoms in the special Rh–O5/Ni(Fe) structure can greatly facilitate surface electronic exchange-and-transfer capabilities with the adsorbates (OHads and HMF molecules) and intermediates for efficient HMFOR and HER. We also reveal that the Fe sites in Rh–O5/Ni(Fe) structure can promote the electrocatalytic stability of the catalyst. Our findings provide new insights into catalyst design for complex reactions involving competitive adsorptions of multiple intermediates. |
doi_str_mv | 10.1021/jacs.3c02570 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2821344067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821344067</sourcerecordid><originalsourceid>FETCH-LOGICAL-a221t-bcafbb9fd36dbe366b1af162f4deb1dc986b4e6d0514d30ceef01125d2bcfc453</originalsourceid><addsrcrecordid>eNpF0M1KAzEUBeAgCtbqzgfIsi6mzU1m0ulSh9YKxYrajZshv23KdDJOMrr1FXxFn8QWC64uBy6Hw4fQNZAhEAqjrVBhyBSh2ZicoB5klCQZUH6KeoQQmoxzzs7RRQjbfUxpDj30VnjfmFZE92Hw8-bn63uZjR7dYGZu8IuLBlvf4qm1TjlTR3zn_E6EgFfNuhXa1Wtc-K6pjMafLm7wnOKn1utORefrS3RmRRXM1fH20Wo2fS3myWJ5_1DcLhJBKcREKmGlnFjNuJaGcS5BWODUptpI0GqSc5karkkGqWZEGWMJAM00lcqqNGN9NPjrbVr_3pkQy50LylSVqI3vQklzCixNCR__v-6hyq3v2no_rARSHvjKA1955GO_1uJkYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821344067</pqid></control><display><type>article</type><title>Cooperative Rh‑O5/Ni(Fe) Site for Efficient Biomass Upgrading Coupled with H2 Production</title><source>American Chemical Society Journals</source><creator>Zeng, Lingyou ; Chen, Yanju ; Sun, Mingzi ; Huang, Qizheng ; Sun, Kaian ; Ma, Jingyuan ; Li, Jiong ; Tan, Hao ; Li, Menggang ; Pan, Yuan ; Liu, Yunqi ; Luo, Mingchuan ; Huang, Bolong ; Guo, Shaojun</creator><creatorcontrib>Zeng, Lingyou ; Chen, Yanju ; Sun, Mingzi ; Huang, Qizheng ; Sun, Kaian ; Ma, Jingyuan ; Li, Jiong ; Tan, Hao ; Li, Menggang ; Pan, Yuan ; Liu, Yunqi ; Luo, Mingchuan ; Huang, Bolong ; Guo, Shaojun</creatorcontrib><description>Designing efficient and durable bifunctional catalysts for 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) and hydrogen evolution reaction (HER) is desirable for the co-production of biomass-upgraded chemicals and sustainable hydrogen, which is limited by the competitive adsorption of hydroxyl species (OHads) and HMF molecules. Here, we report a class of Rh–O5/Ni(Fe) atomic site on nanoporous mesh-type layered double hydroxides with atomic-scale cooperative adsorption centers for highly active and stable alkaline HMFOR and HER catalysis. A low cell voltage of 1.48 V is required to achieve 100 mA cm–2 in an integrated electrolysis system along with excellent stability (>100 h). Operando infrared and X-ray absorption spectroscopic probes unveil that HMF molecules are selectively adsorbed and activated over the single-atom Rh sites and oxidized by in situ-formed electrophilic OHads species on neighboring Ni sites. Theoretical studies further demonstrate that the strong d–d orbital coupling interactions between atomic-level Rh and surrounding Ni atoms in the special Rh–O5/Ni(Fe) structure can greatly facilitate surface electronic exchange-and-transfer capabilities with the adsorbates (OHads and HMF molecules) and intermediates for efficient HMFOR and HER. We also reveal that the Fe sites in Rh–O5/Ni(Fe) structure can promote the electrocatalytic stability of the catalyst. Our findings provide new insights into catalyst design for complex reactions involving competitive adsorptions of multiple intermediates.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c02570</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2023-08, Vol.145 (32), p.17577-17587</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5136-7265 ; 0000-0001-6826-9987 ; 0000-0003-4427-6837 ; 0000-0002-2284-236X ; 0000-0002-2526-2002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c02570$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c02570$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Zeng, Lingyou</creatorcontrib><creatorcontrib>Chen, Yanju</creatorcontrib><creatorcontrib>Sun, Mingzi</creatorcontrib><creatorcontrib>Huang, Qizheng</creatorcontrib><creatorcontrib>Sun, Kaian</creatorcontrib><creatorcontrib>Ma, Jingyuan</creatorcontrib><creatorcontrib>Li, Jiong</creatorcontrib><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Li, Menggang</creatorcontrib><creatorcontrib>Pan, Yuan</creatorcontrib><creatorcontrib>Liu, Yunqi</creatorcontrib><creatorcontrib>Luo, Mingchuan</creatorcontrib><creatorcontrib>Huang, Bolong</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><title>Cooperative Rh‑O5/Ni(Fe) Site for Efficient Biomass Upgrading Coupled with H2 Production</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Designing efficient and durable bifunctional catalysts for 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) and hydrogen evolution reaction (HER) is desirable for the co-production of biomass-upgraded chemicals and sustainable hydrogen, which is limited by the competitive adsorption of hydroxyl species (OHads) and HMF molecules. Here, we report a class of Rh–O5/Ni(Fe) atomic site on nanoporous mesh-type layered double hydroxides with atomic-scale cooperative adsorption centers for highly active and stable alkaline HMFOR and HER catalysis. A low cell voltage of 1.48 V is required to achieve 100 mA cm–2 in an integrated electrolysis system along with excellent stability (>100 h). Operando infrared and X-ray absorption spectroscopic probes unveil that HMF molecules are selectively adsorbed and activated over the single-atom Rh sites and oxidized by in situ-formed electrophilic OHads species on neighboring Ni sites. Theoretical studies further demonstrate that the strong d–d orbital coupling interactions between atomic-level Rh and surrounding Ni atoms in the special Rh–O5/Ni(Fe) structure can greatly facilitate surface electronic exchange-and-transfer capabilities with the adsorbates (OHads and HMF molecules) and intermediates for efficient HMFOR and HER. We also reveal that the Fe sites in Rh–O5/Ni(Fe) structure can promote the electrocatalytic stability of the catalyst. Our findings provide new insights into catalyst design for complex reactions involving competitive adsorptions of multiple intermediates.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpF0M1KAzEUBeAgCtbqzgfIsi6mzU1m0ulSh9YKxYrajZshv23KdDJOMrr1FXxFn8QWC64uBy6Hw4fQNZAhEAqjrVBhyBSh2ZicoB5klCQZUH6KeoQQmoxzzs7RRQjbfUxpDj30VnjfmFZE92Hw8-bn63uZjR7dYGZu8IuLBlvf4qm1TjlTR3zn_E6EgFfNuhXa1Wtc-K6pjMafLm7wnOKn1utORefrS3RmRRXM1fH20Wo2fS3myWJ5_1DcLhJBKcREKmGlnFjNuJaGcS5BWODUptpI0GqSc5karkkGqWZEGWMJAM00lcqqNGN9NPjrbVr_3pkQy50LylSVqI3vQklzCixNCR__v-6hyq3v2no_rARSHvjKA1955GO_1uJkYQ</recordid><startdate>20230816</startdate><enddate>20230816</enddate><creator>Zeng, Lingyou</creator><creator>Chen, Yanju</creator><creator>Sun, Mingzi</creator><creator>Huang, Qizheng</creator><creator>Sun, Kaian</creator><creator>Ma, Jingyuan</creator><creator>Li, Jiong</creator><creator>Tan, Hao</creator><creator>Li, Menggang</creator><creator>Pan, Yuan</creator><creator>Liu, Yunqi</creator><creator>Luo, Mingchuan</creator><creator>Huang, Bolong</creator><creator>Guo, Shaojun</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5136-7265</orcidid><orcidid>https://orcid.org/0000-0001-6826-9987</orcidid><orcidid>https://orcid.org/0000-0003-4427-6837</orcidid><orcidid>https://orcid.org/0000-0002-2284-236X</orcidid><orcidid>https://orcid.org/0000-0002-2526-2002</orcidid></search><sort><creationdate>20230816</creationdate><title>Cooperative Rh‑O5/Ni(Fe) Site for Efficient Biomass Upgrading Coupled with H2 Production</title><author>Zeng, Lingyou ; Chen, Yanju ; Sun, Mingzi ; Huang, Qizheng ; Sun, Kaian ; Ma, Jingyuan ; Li, Jiong ; Tan, Hao ; Li, Menggang ; Pan, Yuan ; Liu, Yunqi ; Luo, Mingchuan ; Huang, Bolong ; Guo, Shaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a221t-bcafbb9fd36dbe366b1af162f4deb1dc986b4e6d0514d30ceef01125d2bcfc453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Lingyou</creatorcontrib><creatorcontrib>Chen, Yanju</creatorcontrib><creatorcontrib>Sun, Mingzi</creatorcontrib><creatorcontrib>Huang, Qizheng</creatorcontrib><creatorcontrib>Sun, Kaian</creatorcontrib><creatorcontrib>Ma, Jingyuan</creatorcontrib><creatorcontrib>Li, Jiong</creatorcontrib><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Li, Menggang</creatorcontrib><creatorcontrib>Pan, Yuan</creatorcontrib><creatorcontrib>Liu, Yunqi</creatorcontrib><creatorcontrib>Luo, Mingchuan</creatorcontrib><creatorcontrib>Huang, Bolong</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Lingyou</au><au>Chen, Yanju</au><au>Sun, Mingzi</au><au>Huang, Qizheng</au><au>Sun, Kaian</au><au>Ma, Jingyuan</au><au>Li, Jiong</au><au>Tan, Hao</au><au>Li, Menggang</au><au>Pan, Yuan</au><au>Liu, Yunqi</au><au>Luo, Mingchuan</au><au>Huang, Bolong</au><au>Guo, Shaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooperative Rh‑O5/Ni(Fe) Site for Efficient Biomass Upgrading Coupled with H2 Production</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-08-16</date><risdate>2023</risdate><volume>145</volume><issue>32</issue><spage>17577</spage><epage>17587</epage><pages>17577-17587</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Designing efficient and durable bifunctional catalysts for 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) and hydrogen evolution reaction (HER) is desirable for the co-production of biomass-upgraded chemicals and sustainable hydrogen, which is limited by the competitive adsorption of hydroxyl species (OHads) and HMF molecules. Here, we report a class of Rh–O5/Ni(Fe) atomic site on nanoporous mesh-type layered double hydroxides with atomic-scale cooperative adsorption centers for highly active and stable alkaline HMFOR and HER catalysis. A low cell voltage of 1.48 V is required to achieve 100 mA cm–2 in an integrated electrolysis system along with excellent stability (>100 h). Operando infrared and X-ray absorption spectroscopic probes unveil that HMF molecules are selectively adsorbed and activated over the single-atom Rh sites and oxidized by in situ-formed electrophilic OHads species on neighboring Ni sites. Theoretical studies further demonstrate that the strong d–d orbital coupling interactions between atomic-level Rh and surrounding Ni atoms in the special Rh–O5/Ni(Fe) structure can greatly facilitate surface electronic exchange-and-transfer capabilities with the adsorbates (OHads and HMF molecules) and intermediates for efficient HMFOR and HER. We also reveal that the Fe sites in Rh–O5/Ni(Fe) structure can promote the electrocatalytic stability of the catalyst. Our findings provide new insights into catalyst design for complex reactions involving competitive adsorptions of multiple intermediates.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.3c02570</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5136-7265</orcidid><orcidid>https://orcid.org/0000-0001-6826-9987</orcidid><orcidid>https://orcid.org/0000-0003-4427-6837</orcidid><orcidid>https://orcid.org/0000-0002-2284-236X</orcidid><orcidid>https://orcid.org/0000-0002-2526-2002</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2023-08, Vol.145 (32), p.17577-17587 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_2821344067 |
source | American Chemical Society Journals |
title | Cooperative Rh‑O5/Ni(Fe) Site for Efficient Biomass Upgrading Coupled with H2 Production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooperative%20Rh%E2%80%91O5/Ni(Fe)%20Site%20for%20Efficient%20Biomass%20Upgrading%20Coupled%20with%20H2%20Production&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zeng,%20Lingyou&rft.date=2023-08-16&rft.volume=145&rft.issue=32&rft.spage=17577&rft.epage=17587&rft.pages=17577-17587&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c02570&rft_dat=%3Cproquest_acs_j%3E2821344067%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821344067&rft_id=info:pmid/&rfr_iscdi=true |