Characterization of thin back-to-back CdTe detectors
Thin CdTe detectors (3/spl times/5 mm/sup 2/ electrode area, 0.5 and 0.8 mm thick), mounted in back-to-back configuration with common anode have been characterized. This configuration allows one to double the useful absorbing thickness in the classical planar parallel field (PPF) irradiation geometr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2001-08, Vol.48 (4), p.1028-1032 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1032 |
---|---|
container_issue | 4 |
container_start_page | 1028 |
container_title | IEEE transactions on nuclear science |
container_volume | 48 |
creator | Auricchio, N. Caroli, E. Denati, A. Dusi, W. Fougeres, P. Grassi, D. Perillo, E. Siffert, P. |
description | Thin CdTe detectors (3/spl times/5 mm/sup 2/ electrode area, 0.5 and 0.8 mm thick), mounted in back-to-back configuration with common anode have been characterized. This configuration allows one to double the useful absorbing thickness in the classical planar parallel field (PPF) irradiation geometry and to double the sensitive area in the planar transverse field (PTF) geometry, while maintaining the same interelectrode distance (0.5 or 0.8 mm) and one electronic chain as for single detectors. The tests performed aim at understanding the effects on the spectroscopic performance of various interelectrode distances and in particular of the chemical and mechanical treatments used to make thin detectors. A narrow photon beam, 10-150 keV in energy, obtained using a 20-mm-thick tungsten collimator, was employed. The results obtained, compared with previous measurements on various thicknesses devices, indicate that the optimum single detector thickness is 1 mm. |
doi_str_mv | 10.1109/23.958718 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28211669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>958718</ieee_id><sourcerecordid>914653780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-786d90d1e88009b39d1decaaba475988dc982b57e080d4e6e52b56bb98c616d53</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQpDKxMEQOIIcVOYuduRBFfUiWWMluOfVVT2rrY7gC_nlSpGBiYTq_u0Un3MnYp-EQIjvdFOUEJtYAjNhJSQi5kDcdsxLmAHCvEU3YW47KPleRyxKpmYYKxiUL3bVLnN5mfZ2nRbbLW2I88-Xw_s8bNKHOUyCYf4jk7mZtVpIvDHLP3p8dZ85JP355fm4dpbstSpbwG5ZA7QQCcY1uiE46sMa2paokAziIUrayJA3cVKZJ9Um2LYJVQTpZjdjvc3Qb_uaOY9LqLllYrsyG_ixpFpWRZA-_lzb-ygEIIpbCH13_g0u_Cpv9CI9ZYKZRFj-4GZIOPMdBcb0O3NuFLC673Neui1EPNvb0abEdEv-6w_AE4nnVa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>997946952</pqid></control><display><type>article</type><title>Characterization of thin back-to-back CdTe detectors</title><source>IEEE Xplore</source><creator>Auricchio, N. ; Caroli, E. ; Denati, A. ; Dusi, W. ; Fougeres, P. ; Grassi, D. ; Perillo, E. ; Siffert, P.</creator><creatorcontrib>Auricchio, N. ; Caroli, E. ; Denati, A. ; Dusi, W. ; Fougeres, P. ; Grassi, D. ; Perillo, E. ; Siffert, P.</creatorcontrib><description>Thin CdTe detectors (3/spl times/5 mm/sup 2/ electrode area, 0.5 and 0.8 mm thick), mounted in back-to-back configuration with common anode have been characterized. This configuration allows one to double the useful absorbing thickness in the classical planar parallel field (PPF) irradiation geometry and to double the sensitive area in the planar transverse field (PTF) geometry, while maintaining the same interelectrode distance (0.5 or 0.8 mm) and one electronic chain as for single detectors. The tests performed aim at understanding the effects on the spectroscopic performance of various interelectrode distances and in particular of the chemical and mechanical treatments used to make thin detectors. A narrow photon beam, 10-150 keV in energy, obtained using a 20-mm-thick tungsten collimator, was employed. The results obtained, compared with previous measurements on various thicknesses devices, indicate that the optimum single detector thickness is 1 mm.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/23.958718</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absorption ; Anodes ; Cadmium tellurides ; Chemicals ; Detectors ; Electrodes ; Electronics ; Energy use ; Geometry ; Optical collimators ; Optimization ; Performance evaluation ; Photon beams ; Spectroscopy ; Testing ; Tungsten</subject><ispartof>IEEE transactions on nuclear science, 2001-08, Vol.48 (4), p.1028-1032</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-786d90d1e88009b39d1decaaba475988dc982b57e080d4e6e52b56bb98c616d53</citedby><cites>FETCH-LOGICAL-c336t-786d90d1e88009b39d1decaaba475988dc982b57e080d4e6e52b56bb98c616d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/958718$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/958718$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Auricchio, N.</creatorcontrib><creatorcontrib>Caroli, E.</creatorcontrib><creatorcontrib>Denati, A.</creatorcontrib><creatorcontrib>Dusi, W.</creatorcontrib><creatorcontrib>Fougeres, P.</creatorcontrib><creatorcontrib>Grassi, D.</creatorcontrib><creatorcontrib>Perillo, E.</creatorcontrib><creatorcontrib>Siffert, P.</creatorcontrib><title>Characterization of thin back-to-back CdTe detectors</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Thin CdTe detectors (3/spl times/5 mm/sup 2/ electrode area, 0.5 and 0.8 mm thick), mounted in back-to-back configuration with common anode have been characterized. This configuration allows one to double the useful absorbing thickness in the classical planar parallel field (PPF) irradiation geometry and to double the sensitive area in the planar transverse field (PTF) geometry, while maintaining the same interelectrode distance (0.5 or 0.8 mm) and one electronic chain as for single detectors. The tests performed aim at understanding the effects on the spectroscopic performance of various interelectrode distances and in particular of the chemical and mechanical treatments used to make thin detectors. A narrow photon beam, 10-150 keV in energy, obtained using a 20-mm-thick tungsten collimator, was employed. The results obtained, compared with previous measurements on various thicknesses devices, indicate that the optimum single detector thickness is 1 mm.</description><subject>Absorption</subject><subject>Anodes</subject><subject>Cadmium tellurides</subject><subject>Chemicals</subject><subject>Detectors</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Energy use</subject><subject>Geometry</subject><subject>Optical collimators</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Photon beams</subject><subject>Spectroscopy</subject><subject>Testing</subject><subject>Tungsten</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90D1PwzAQBmALgUQpDKxMEQOIIcVOYuduRBFfUiWWMluOfVVT2rrY7gC_nlSpGBiYTq_u0Un3MnYp-EQIjvdFOUEJtYAjNhJSQi5kDcdsxLmAHCvEU3YW47KPleRyxKpmYYKxiUL3bVLnN5mfZ2nRbbLW2I88-Xw_s8bNKHOUyCYf4jk7mZtVpIvDHLP3p8dZ85JP355fm4dpbstSpbwG5ZA7QQCcY1uiE46sMa2paokAziIUrayJA3cVKZJ9Um2LYJVQTpZjdjvc3Qb_uaOY9LqLllYrsyG_ixpFpWRZA-_lzb-ygEIIpbCH13_g0u_Cpv9CI9ZYKZRFj-4GZIOPMdBcb0O3NuFLC673Neui1EPNvb0abEdEv-6w_AE4nnVa</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Auricchio, N.</creator><creator>Caroli, E.</creator><creator>Denati, A.</creator><creator>Dusi, W.</creator><creator>Fougeres, P.</creator><creator>Grassi, D.</creator><creator>Perillo, E.</creator><creator>Siffert, P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20010801</creationdate><title>Characterization of thin back-to-back CdTe detectors</title><author>Auricchio, N. ; Caroli, E. ; Denati, A. ; Dusi, W. ; Fougeres, P. ; Grassi, D. ; Perillo, E. ; Siffert, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-786d90d1e88009b39d1decaaba475988dc982b57e080d4e6e52b56bb98c616d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Absorption</topic><topic>Anodes</topic><topic>Cadmium tellurides</topic><topic>Chemicals</topic><topic>Detectors</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Energy use</topic><topic>Geometry</topic><topic>Optical collimators</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Photon beams</topic><topic>Spectroscopy</topic><topic>Testing</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Auricchio, N.</creatorcontrib><creatorcontrib>Caroli, E.</creatorcontrib><creatorcontrib>Denati, A.</creatorcontrib><creatorcontrib>Dusi, W.</creatorcontrib><creatorcontrib>Fougeres, P.</creatorcontrib><creatorcontrib>Grassi, D.</creatorcontrib><creatorcontrib>Perillo, E.</creatorcontrib><creatorcontrib>Siffert, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Auricchio, N.</au><au>Caroli, E.</au><au>Denati, A.</au><au>Dusi, W.</au><au>Fougeres, P.</au><au>Grassi, D.</au><au>Perillo, E.</au><au>Siffert, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of thin back-to-back CdTe detectors</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2001-08-01</date><risdate>2001</risdate><volume>48</volume><issue>4</issue><spage>1028</spage><epage>1032</epage><pages>1028-1032</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Thin CdTe detectors (3/spl times/5 mm/sup 2/ electrode area, 0.5 and 0.8 mm thick), mounted in back-to-back configuration with common anode have been characterized. This configuration allows one to double the useful absorbing thickness in the classical planar parallel field (PPF) irradiation geometry and to double the sensitive area in the planar transverse field (PTF) geometry, while maintaining the same interelectrode distance (0.5 or 0.8 mm) and one electronic chain as for single detectors. The tests performed aim at understanding the effects on the spectroscopic performance of various interelectrode distances and in particular of the chemical and mechanical treatments used to make thin detectors. A narrow photon beam, 10-150 keV in energy, obtained using a 20-mm-thick tungsten collimator, was employed. The results obtained, compared with previous measurements on various thicknesses devices, indicate that the optimum single detector thickness is 1 mm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/23.958718</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2001-08, Vol.48 (4), p.1028-1032 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_miscellaneous_28211669 |
source | IEEE Xplore |
subjects | Absorption Anodes Cadmium tellurides Chemicals Detectors Electrodes Electronics Energy use Geometry Optical collimators Optimization Performance evaluation Photon beams Spectroscopy Testing Tungsten |
title | Characterization of thin back-to-back CdTe detectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T05%3A15%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20thin%20back-to-back%20CdTe%20detectors&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Auricchio,%20N.&rft.date=2001-08-01&rft.volume=48&rft.issue=4&rft.spage=1028&rft.epage=1032&rft.pages=1028-1032&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/23.958718&rft_dat=%3Cproquest_RIE%3E914653780%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=997946952&rft_id=info:pmid/&rft_ieee_id=958718&rfr_iscdi=true |