Precise Strain Tuning Boosts Electrocatalytic Hydrogen Generation
Strain engineering has been utilized as an effective approach to regulate the binding of reaction intermediates and modify catalytic behavior on noble metal nanocatalysts. However, the continuous, precise control of strain for a depiction of strain‐activity correlation remains a challenge. Herein, P...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2023-08, Vol.35 (32), p.e2302285-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 32 |
container_start_page | e2302285 |
container_title | Advanced materials (Weinheim) |
container_volume | 35 |
creator | Guo, Hongyu Li, Lu Chen, Yan Zhang, Wenshu Shang, Changshuai Cao, Xiaoqing Li, Menggang Zhang, Qinghua Tan, Hao Nie, Yan Gu, Lin Guo, Shaojun |
description | Strain engineering has been utilized as an effective approach to regulate the binding of reaction intermediates and modify catalytic behavior on noble metal nanocatalysts. However, the continuous, precise control of strain for a depiction of strain‐activity correlation remains a challenge. Herein, Pd‐based nanooctahedrons coated with two Ir overlayers are constructed, and subject to different postsynthetic treatments to alter the amount of H intercalated into Pd core for achieving three different surface strains (o‐Pd/Ir‐1.2%, o‐Pd/Ir‐1.7%, and o‐Pd/Ir‐2.1% NPs). It is demonstrated that the catalytic performances of o‐Pd/Ir NPs display a volcano‐shaped curve against strains toward the hydrogen evolution reaction (HER). Specifically, o‐Pd/Ir‐1.7% NPs exhibit superior catalytic performance with a mass activity of 9.38 A mgIr−1 at −0.02 V versus reversible hydrogen electrode, 10.8‐ and 18.8‐fold higher than those of commercial Pt/C and Ir/C, respectively, making it one of the most active HER electrocatalysts reported to date. Density function theory calculations verify that the moderate tensile strain on Ir(111) surfaces plays a pivotal role in optimizing the H binding energy. This work highlights a new strategy for precise control over the surface strain of nanocrystals for more efficient electrocatalysis.
By precisely and continuously controlling the surface tensile strain of Pd‐based nanooctahedrons coated with two Ir atomic layers, core/shell nanocrystals with 1.7% tensile strain relative to Ir demonstrate optimized d‐band centers and boosted hydrogen evolution performance. |
doi_str_mv | 10.1002/adma.202302285 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2820971307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820971307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-3fddbf9988b7f0174cc8fadafc1b2691e2223cb695839cc8aa9090f6f727846b3</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIMobk6vHqXgxUvnS9IfyXHOuQkTBee5pGkyOtpmJi3S_96MzQlePL3D-97H40PoGsMYA5B7UdRiTIBQIITFJ2iIY4LDCHh8iobAaRzyJGIDdOHcBgB4Ask5GtCURAwiGKLJm1WydCp4b60om2DVNWWzDh6Mca0LZpWSrTVStKLq21IGi76wZq2aYK4aZUVbmuYSnWlROXV1mCP08TRbTRfh8nX-PJ0sQ0lT_wbVRZFrzhnLUw04jaRkWhRCS5yThGNFCKEyT3jMKPc7IThw0IlOScqiJKcjdLf3bq357JRrs7p0UlWVaJTpXEYYAZ5iCqlHb_-gG9PZxn_nqYjhXa_YU-M9Ja1xziqdbW1ZC9tnGLJd3GwXNzvG9Qc3B22X16o44j81PcD3wFdZqf4fXTZ5fJn8yr8B1T-FEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848120235</pqid></control><display><type>article</type><title>Precise Strain Tuning Boosts Electrocatalytic Hydrogen Generation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guo, Hongyu ; Li, Lu ; Chen, Yan ; Zhang, Wenshu ; Shang, Changshuai ; Cao, Xiaoqing ; Li, Menggang ; Zhang, Qinghua ; Tan, Hao ; Nie, Yan ; Gu, Lin ; Guo, Shaojun</creator><creatorcontrib>Guo, Hongyu ; Li, Lu ; Chen, Yan ; Zhang, Wenshu ; Shang, Changshuai ; Cao, Xiaoqing ; Li, Menggang ; Zhang, Qinghua ; Tan, Hao ; Nie, Yan ; Gu, Lin ; Guo, Shaojun</creatorcontrib><description>Strain engineering has been utilized as an effective approach to regulate the binding of reaction intermediates and modify catalytic behavior on noble metal nanocatalysts. However, the continuous, precise control of strain for a depiction of strain‐activity correlation remains a challenge. Herein, Pd‐based nanooctahedrons coated with two Ir overlayers are constructed, and subject to different postsynthetic treatments to alter the amount of H intercalated into Pd core for achieving three different surface strains (o‐Pd/Ir‐1.2%, o‐Pd/Ir‐1.7%, and o‐Pd/Ir‐2.1% NPs). It is demonstrated that the catalytic performances of o‐Pd/Ir NPs display a volcano‐shaped curve against strains toward the hydrogen evolution reaction (HER). Specifically, o‐Pd/Ir‐1.7% NPs exhibit superior catalytic performance with a mass activity of 9.38 A mgIr−1 at −0.02 V versus reversible hydrogen electrode, 10.8‐ and 18.8‐fold higher than those of commercial Pt/C and Ir/C, respectively, making it one of the most active HER electrocatalysts reported to date. Density function theory calculations verify that the moderate tensile strain on Ir(111) surfaces plays a pivotal role in optimizing the H binding energy. This work highlights a new strategy for precise control over the surface strain of nanocrystals for more efficient electrocatalysis.
By precisely and continuously controlling the surface tensile strain of Pd‐based nanooctahedrons coated with two Ir atomic layers, core/shell nanocrystals with 1.7% tensile strain relative to Ir demonstrate optimized d‐band centers and boosted hydrogen evolution performance.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202302285</identifier><identifier>PMID: 37248040</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>core/shell structure ; Density functional theory ; Electrocatalysts ; hydrogen evolution reaction ; Hydrogen evolution reactions ; Hydrogen production ; intercalation ; Iridium ; Materials science ; Nanocrystals ; Noble metals ; Palladium ; Reaction intermediates ; strain ; Tensile strain</subject><ispartof>Advanced materials (Weinheim), 2023-08, Vol.35 (32), p.e2302285-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-3fddbf9988b7f0174cc8fadafc1b2691e2223cb695839cc8aa9090f6f727846b3</citedby><cites>FETCH-LOGICAL-c3735-3fddbf9988b7f0174cc8fadafc1b2691e2223cb695839cc8aa9090f6f727846b3</cites><orcidid>0000-0003-4427-6837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202302285$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202302285$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37248040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Hongyu</creatorcontrib><creatorcontrib>Li, Lu</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Zhang, Wenshu</creatorcontrib><creatorcontrib>Shang, Changshuai</creatorcontrib><creatorcontrib>Cao, Xiaoqing</creatorcontrib><creatorcontrib>Li, Menggang</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Nie, Yan</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><title>Precise Strain Tuning Boosts Electrocatalytic Hydrogen Generation</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Strain engineering has been utilized as an effective approach to regulate the binding of reaction intermediates and modify catalytic behavior on noble metal nanocatalysts. However, the continuous, precise control of strain for a depiction of strain‐activity correlation remains a challenge. Herein, Pd‐based nanooctahedrons coated with two Ir overlayers are constructed, and subject to different postsynthetic treatments to alter the amount of H intercalated into Pd core for achieving three different surface strains (o‐Pd/Ir‐1.2%, o‐Pd/Ir‐1.7%, and o‐Pd/Ir‐2.1% NPs). It is demonstrated that the catalytic performances of o‐Pd/Ir NPs display a volcano‐shaped curve against strains toward the hydrogen evolution reaction (HER). Specifically, o‐Pd/Ir‐1.7% NPs exhibit superior catalytic performance with a mass activity of 9.38 A mgIr−1 at −0.02 V versus reversible hydrogen electrode, 10.8‐ and 18.8‐fold higher than those of commercial Pt/C and Ir/C, respectively, making it one of the most active HER electrocatalysts reported to date. Density function theory calculations verify that the moderate tensile strain on Ir(111) surfaces plays a pivotal role in optimizing the H binding energy. This work highlights a new strategy for precise control over the surface strain of nanocrystals for more efficient electrocatalysis.
By precisely and continuously controlling the surface tensile strain of Pd‐based nanooctahedrons coated with two Ir atomic layers, core/shell nanocrystals with 1.7% tensile strain relative to Ir demonstrate optimized d‐band centers and boosted hydrogen evolution performance.</description><subject>core/shell structure</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>intercalation</subject><subject>Iridium</subject><subject>Materials science</subject><subject>Nanocrystals</subject><subject>Noble metals</subject><subject>Palladium</subject><subject>Reaction intermediates</subject><subject>strain</subject><subject>Tensile strain</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUgIMobk6vHqXgxUvnS9IfyXHOuQkTBee5pGkyOtpmJi3S_96MzQlePL3D-97H40PoGsMYA5B7UdRiTIBQIITFJ2iIY4LDCHh8iobAaRzyJGIDdOHcBgB4Ask5GtCURAwiGKLJm1WydCp4b60om2DVNWWzDh6Mca0LZpWSrTVStKLq21IGi76wZq2aYK4aZUVbmuYSnWlROXV1mCP08TRbTRfh8nX-PJ0sQ0lT_wbVRZFrzhnLUw04jaRkWhRCS5yThGNFCKEyT3jMKPc7IThw0IlOScqiJKcjdLf3bq357JRrs7p0UlWVaJTpXEYYAZ5iCqlHb_-gG9PZxn_nqYjhXa_YU-M9Ja1xziqdbW1ZC9tnGLJd3GwXNzvG9Qc3B22X16o44j81PcD3wFdZqf4fXTZ5fJn8yr8B1T-FEA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Guo, Hongyu</creator><creator>Li, Lu</creator><creator>Chen, Yan</creator><creator>Zhang, Wenshu</creator><creator>Shang, Changshuai</creator><creator>Cao, Xiaoqing</creator><creator>Li, Menggang</creator><creator>Zhang, Qinghua</creator><creator>Tan, Hao</creator><creator>Nie, Yan</creator><creator>Gu, Lin</creator><creator>Guo, Shaojun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4427-6837</orcidid></search><sort><creationdate>20230801</creationdate><title>Precise Strain Tuning Boosts Electrocatalytic Hydrogen Generation</title><author>Guo, Hongyu ; Li, Lu ; Chen, Yan ; Zhang, Wenshu ; Shang, Changshuai ; Cao, Xiaoqing ; Li, Menggang ; Zhang, Qinghua ; Tan, Hao ; Nie, Yan ; Gu, Lin ; Guo, Shaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-3fddbf9988b7f0174cc8fadafc1b2691e2223cb695839cc8aa9090f6f727846b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>core/shell structure</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>intercalation</topic><topic>Iridium</topic><topic>Materials science</topic><topic>Nanocrystals</topic><topic>Noble metals</topic><topic>Palladium</topic><topic>Reaction intermediates</topic><topic>strain</topic><topic>Tensile strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hongyu</creatorcontrib><creatorcontrib>Li, Lu</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Zhang, Wenshu</creatorcontrib><creatorcontrib>Shang, Changshuai</creatorcontrib><creatorcontrib>Cao, Xiaoqing</creatorcontrib><creatorcontrib>Li, Menggang</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Nie, Yan</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hongyu</au><au>Li, Lu</au><au>Chen, Yan</au><au>Zhang, Wenshu</au><au>Shang, Changshuai</au><au>Cao, Xiaoqing</au><au>Li, Menggang</au><au>Zhang, Qinghua</au><au>Tan, Hao</au><au>Nie, Yan</au><au>Gu, Lin</au><au>Guo, Shaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise Strain Tuning Boosts Electrocatalytic Hydrogen Generation</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>35</volume><issue>32</issue><spage>e2302285</spage><epage>n/a</epage><pages>e2302285-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Strain engineering has been utilized as an effective approach to regulate the binding of reaction intermediates and modify catalytic behavior on noble metal nanocatalysts. However, the continuous, precise control of strain for a depiction of strain‐activity correlation remains a challenge. Herein, Pd‐based nanooctahedrons coated with two Ir overlayers are constructed, and subject to different postsynthetic treatments to alter the amount of H intercalated into Pd core for achieving three different surface strains (o‐Pd/Ir‐1.2%, o‐Pd/Ir‐1.7%, and o‐Pd/Ir‐2.1% NPs). It is demonstrated that the catalytic performances of o‐Pd/Ir NPs display a volcano‐shaped curve against strains toward the hydrogen evolution reaction (HER). Specifically, o‐Pd/Ir‐1.7% NPs exhibit superior catalytic performance with a mass activity of 9.38 A mgIr−1 at −0.02 V versus reversible hydrogen electrode, 10.8‐ and 18.8‐fold higher than those of commercial Pt/C and Ir/C, respectively, making it one of the most active HER electrocatalysts reported to date. Density function theory calculations verify that the moderate tensile strain on Ir(111) surfaces plays a pivotal role in optimizing the H binding energy. This work highlights a new strategy for precise control over the surface strain of nanocrystals for more efficient electrocatalysis.
By precisely and continuously controlling the surface tensile strain of Pd‐based nanooctahedrons coated with two Ir atomic layers, core/shell nanocrystals with 1.7% tensile strain relative to Ir demonstrate optimized d‐band centers and boosted hydrogen evolution performance.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37248040</pmid><doi>10.1002/adma.202302285</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4427-6837</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2023-08, Vol.35 (32), p.e2302285-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2820971307 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | core/shell structure Density functional theory Electrocatalysts hydrogen evolution reaction Hydrogen evolution reactions Hydrogen production intercalation Iridium Materials science Nanocrystals Noble metals Palladium Reaction intermediates strain Tensile strain |
title | Precise Strain Tuning Boosts Electrocatalytic Hydrogen Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20Strain%20Tuning%20Boosts%20Electrocatalytic%20Hydrogen%20Generation&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Guo,%20Hongyu&rft.date=2023-08-01&rft.volume=35&rft.issue=32&rft.spage=e2302285&rft.epage=n/a&rft.pages=e2302285-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202302285&rft_dat=%3Cproquest_cross%3E2820971307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848120235&rft_id=info:pmid/37248040&rfr_iscdi=true |