Precise Strain Tuning Boosts Electrocatalytic Hydrogen Generation

Strain engineering has been utilized as an effective approach to regulate the binding of reaction intermediates and modify catalytic behavior on noble metal nanocatalysts. However, the continuous, precise control of strain for a depiction of strain‐activity correlation remains a challenge. Herein, P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-08, Vol.35 (32), p.e2302285-n/a
Hauptverfasser: Guo, Hongyu, Li, Lu, Chen, Yan, Zhang, Wenshu, Shang, Changshuai, Cao, Xiaoqing, Li, Menggang, Zhang, Qinghua, Tan, Hao, Nie, Yan, Gu, Lin, Guo, Shaojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 32
container_start_page e2302285
container_title Advanced materials (Weinheim)
container_volume 35
creator Guo, Hongyu
Li, Lu
Chen, Yan
Zhang, Wenshu
Shang, Changshuai
Cao, Xiaoqing
Li, Menggang
Zhang, Qinghua
Tan, Hao
Nie, Yan
Gu, Lin
Guo, Shaojun
description Strain engineering has been utilized as an effective approach to regulate the binding of reaction intermediates and modify catalytic behavior on noble metal nanocatalysts. However, the continuous, precise control of strain for a depiction of strain‐activity correlation remains a challenge. Herein, Pd‐based nanooctahedrons coated with two Ir overlayers are constructed, and subject to different postsynthetic treatments to alter the amount of H intercalated into Pd core for achieving three different surface strains (o‐Pd/Ir‐1.2%, o‐Pd/Ir‐1.7%, and o‐Pd/Ir‐2.1% NPs). It is demonstrated that the catalytic performances of o‐Pd/Ir NPs display a volcano‐shaped curve against strains toward the hydrogen evolution reaction (HER). Specifically, o‐Pd/Ir‐1.7% NPs exhibit superior catalytic performance with a mass activity of 9.38 A mgIr−1 at −0.02 V versus reversible hydrogen electrode, 10.8‐ and 18.8‐fold higher than those of commercial Pt/C and Ir/C, respectively, making it one of the most active HER electrocatalysts reported to date. Density function theory calculations verify that the moderate tensile strain on Ir(111) surfaces plays a pivotal role in optimizing the H binding energy. This work highlights a new strategy for precise control over the surface strain of nanocrystals for more efficient electrocatalysis. By precisely and continuously controlling the surface tensile strain of Pd‐based nanooctahedrons coated with two Ir atomic layers, core/shell nanocrystals with 1.7% tensile strain relative to Ir demonstrate optimized d‐band centers and boosted hydrogen evolution performance.
doi_str_mv 10.1002/adma.202302285
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2820971307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820971307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-3fddbf9988b7f0174cc8fadafc1b2691e2223cb695839cc8aa9090f6f727846b3</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIMobk6vHqXgxUvnS9IfyXHOuQkTBee5pGkyOtpmJi3S_96MzQlePL3D-97H40PoGsMYA5B7UdRiTIBQIITFJ2iIY4LDCHh8iobAaRzyJGIDdOHcBgB4Ask5GtCURAwiGKLJm1WydCp4b60om2DVNWWzDh6Mca0LZpWSrTVStKLq21IGi76wZq2aYK4aZUVbmuYSnWlROXV1mCP08TRbTRfh8nX-PJ0sQ0lT_wbVRZFrzhnLUw04jaRkWhRCS5yThGNFCKEyT3jMKPc7IThw0IlOScqiJKcjdLf3bq357JRrs7p0UlWVaJTpXEYYAZ5iCqlHb_-gG9PZxn_nqYjhXa_YU-M9Ja1xziqdbW1ZC9tnGLJd3GwXNzvG9Qc3B22X16o44j81PcD3wFdZqf4fXTZ5fJn8yr8B1T-FEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848120235</pqid></control><display><type>article</type><title>Precise Strain Tuning Boosts Electrocatalytic Hydrogen Generation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guo, Hongyu ; Li, Lu ; Chen, Yan ; Zhang, Wenshu ; Shang, Changshuai ; Cao, Xiaoqing ; Li, Menggang ; Zhang, Qinghua ; Tan, Hao ; Nie, Yan ; Gu, Lin ; Guo, Shaojun</creator><creatorcontrib>Guo, Hongyu ; Li, Lu ; Chen, Yan ; Zhang, Wenshu ; Shang, Changshuai ; Cao, Xiaoqing ; Li, Menggang ; Zhang, Qinghua ; Tan, Hao ; Nie, Yan ; Gu, Lin ; Guo, Shaojun</creatorcontrib><description>Strain engineering has been utilized as an effective approach to regulate the binding of reaction intermediates and modify catalytic behavior on noble metal nanocatalysts. However, the continuous, precise control of strain for a depiction of strain‐activity correlation remains a challenge. Herein, Pd‐based nanooctahedrons coated with two Ir overlayers are constructed, and subject to different postsynthetic treatments to alter the amount of H intercalated into Pd core for achieving three different surface strains (o‐Pd/Ir‐1.2%, o‐Pd/Ir‐1.7%, and o‐Pd/Ir‐2.1% NPs). It is demonstrated that the catalytic performances of o‐Pd/Ir NPs display a volcano‐shaped curve against strains toward the hydrogen evolution reaction (HER). Specifically, o‐Pd/Ir‐1.7% NPs exhibit superior catalytic performance with a mass activity of 9.38 A mgIr−1 at −0.02 V versus reversible hydrogen electrode, 10.8‐ and 18.8‐fold higher than those of commercial Pt/C and Ir/C, respectively, making it one of the most active HER electrocatalysts reported to date. Density function theory calculations verify that the moderate tensile strain on Ir(111) surfaces plays a pivotal role in optimizing the H binding energy. This work highlights a new strategy for precise control over the surface strain of nanocrystals for more efficient electrocatalysis. By precisely and continuously controlling the surface tensile strain of Pd‐based nanooctahedrons coated with two Ir atomic layers, core/shell nanocrystals with 1.7% tensile strain relative to Ir demonstrate optimized d‐band centers and boosted hydrogen evolution performance.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202302285</identifier><identifier>PMID: 37248040</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>core/shell structure ; Density functional theory ; Electrocatalysts ; hydrogen evolution reaction ; Hydrogen evolution reactions ; Hydrogen production ; intercalation ; Iridium ; Materials science ; Nanocrystals ; Noble metals ; Palladium ; Reaction intermediates ; strain ; Tensile strain</subject><ispartof>Advanced materials (Weinheim), 2023-08, Vol.35 (32), p.e2302285-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-3fddbf9988b7f0174cc8fadafc1b2691e2223cb695839cc8aa9090f6f727846b3</citedby><cites>FETCH-LOGICAL-c3735-3fddbf9988b7f0174cc8fadafc1b2691e2223cb695839cc8aa9090f6f727846b3</cites><orcidid>0000-0003-4427-6837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202302285$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202302285$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37248040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Hongyu</creatorcontrib><creatorcontrib>Li, Lu</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Zhang, Wenshu</creatorcontrib><creatorcontrib>Shang, Changshuai</creatorcontrib><creatorcontrib>Cao, Xiaoqing</creatorcontrib><creatorcontrib>Li, Menggang</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Nie, Yan</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><title>Precise Strain Tuning Boosts Electrocatalytic Hydrogen Generation</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Strain engineering has been utilized as an effective approach to regulate the binding of reaction intermediates and modify catalytic behavior on noble metal nanocatalysts. However, the continuous, precise control of strain for a depiction of strain‐activity correlation remains a challenge. Herein, Pd‐based nanooctahedrons coated with two Ir overlayers are constructed, and subject to different postsynthetic treatments to alter the amount of H intercalated into Pd core for achieving three different surface strains (o‐Pd/Ir‐1.2%, o‐Pd/Ir‐1.7%, and o‐Pd/Ir‐2.1% NPs). It is demonstrated that the catalytic performances of o‐Pd/Ir NPs display a volcano‐shaped curve against strains toward the hydrogen evolution reaction (HER). Specifically, o‐Pd/Ir‐1.7% NPs exhibit superior catalytic performance with a mass activity of 9.38 A mgIr−1 at −0.02 V versus reversible hydrogen electrode, 10.8‐ and 18.8‐fold higher than those of commercial Pt/C and Ir/C, respectively, making it one of the most active HER electrocatalysts reported to date. Density function theory calculations verify that the moderate tensile strain on Ir(111) surfaces plays a pivotal role in optimizing the H binding energy. This work highlights a new strategy for precise control over the surface strain of nanocrystals for more efficient electrocatalysis. By precisely and continuously controlling the surface tensile strain of Pd‐based nanooctahedrons coated with two Ir atomic layers, core/shell nanocrystals with 1.7% tensile strain relative to Ir demonstrate optimized d‐band centers and boosted hydrogen evolution performance.</description><subject>core/shell structure</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>intercalation</subject><subject>Iridium</subject><subject>Materials science</subject><subject>Nanocrystals</subject><subject>Noble metals</subject><subject>Palladium</subject><subject>Reaction intermediates</subject><subject>strain</subject><subject>Tensile strain</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUgIMobk6vHqXgxUvnS9IfyXHOuQkTBee5pGkyOtpmJi3S_96MzQlePL3D-97H40PoGsMYA5B7UdRiTIBQIITFJ2iIY4LDCHh8iobAaRzyJGIDdOHcBgB4Ask5GtCURAwiGKLJm1WydCp4b60om2DVNWWzDh6Mca0LZpWSrTVStKLq21IGi76wZq2aYK4aZUVbmuYSnWlROXV1mCP08TRbTRfh8nX-PJ0sQ0lT_wbVRZFrzhnLUw04jaRkWhRCS5yThGNFCKEyT3jMKPc7IThw0IlOScqiJKcjdLf3bq357JRrs7p0UlWVaJTpXEYYAZ5iCqlHb_-gG9PZxn_nqYjhXa_YU-M9Ja1xziqdbW1ZC9tnGLJd3GwXNzvG9Qc3B22X16o44j81PcD3wFdZqf4fXTZ5fJn8yr8B1T-FEA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Guo, Hongyu</creator><creator>Li, Lu</creator><creator>Chen, Yan</creator><creator>Zhang, Wenshu</creator><creator>Shang, Changshuai</creator><creator>Cao, Xiaoqing</creator><creator>Li, Menggang</creator><creator>Zhang, Qinghua</creator><creator>Tan, Hao</creator><creator>Nie, Yan</creator><creator>Gu, Lin</creator><creator>Guo, Shaojun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4427-6837</orcidid></search><sort><creationdate>20230801</creationdate><title>Precise Strain Tuning Boosts Electrocatalytic Hydrogen Generation</title><author>Guo, Hongyu ; Li, Lu ; Chen, Yan ; Zhang, Wenshu ; Shang, Changshuai ; Cao, Xiaoqing ; Li, Menggang ; Zhang, Qinghua ; Tan, Hao ; Nie, Yan ; Gu, Lin ; Guo, Shaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-3fddbf9988b7f0174cc8fadafc1b2691e2223cb695839cc8aa9090f6f727846b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>core/shell structure</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>intercalation</topic><topic>Iridium</topic><topic>Materials science</topic><topic>Nanocrystals</topic><topic>Noble metals</topic><topic>Palladium</topic><topic>Reaction intermediates</topic><topic>strain</topic><topic>Tensile strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hongyu</creatorcontrib><creatorcontrib>Li, Lu</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Zhang, Wenshu</creatorcontrib><creatorcontrib>Shang, Changshuai</creatorcontrib><creatorcontrib>Cao, Xiaoqing</creatorcontrib><creatorcontrib>Li, Menggang</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Nie, Yan</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hongyu</au><au>Li, Lu</au><au>Chen, Yan</au><au>Zhang, Wenshu</au><au>Shang, Changshuai</au><au>Cao, Xiaoqing</au><au>Li, Menggang</au><au>Zhang, Qinghua</au><au>Tan, Hao</au><au>Nie, Yan</au><au>Gu, Lin</au><au>Guo, Shaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise Strain Tuning Boosts Electrocatalytic Hydrogen Generation</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>35</volume><issue>32</issue><spage>e2302285</spage><epage>n/a</epage><pages>e2302285-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Strain engineering has been utilized as an effective approach to regulate the binding of reaction intermediates and modify catalytic behavior on noble metal nanocatalysts. However, the continuous, precise control of strain for a depiction of strain‐activity correlation remains a challenge. Herein, Pd‐based nanooctahedrons coated with two Ir overlayers are constructed, and subject to different postsynthetic treatments to alter the amount of H intercalated into Pd core for achieving three different surface strains (o‐Pd/Ir‐1.2%, o‐Pd/Ir‐1.7%, and o‐Pd/Ir‐2.1% NPs). It is demonstrated that the catalytic performances of o‐Pd/Ir NPs display a volcano‐shaped curve against strains toward the hydrogen evolution reaction (HER). Specifically, o‐Pd/Ir‐1.7% NPs exhibit superior catalytic performance with a mass activity of 9.38 A mgIr−1 at −0.02 V versus reversible hydrogen electrode, 10.8‐ and 18.8‐fold higher than those of commercial Pt/C and Ir/C, respectively, making it one of the most active HER electrocatalysts reported to date. Density function theory calculations verify that the moderate tensile strain on Ir(111) surfaces plays a pivotal role in optimizing the H binding energy. This work highlights a new strategy for precise control over the surface strain of nanocrystals for more efficient electrocatalysis. By precisely and continuously controlling the surface tensile strain of Pd‐based nanooctahedrons coated with two Ir atomic layers, core/shell nanocrystals with 1.7% tensile strain relative to Ir demonstrate optimized d‐band centers and boosted hydrogen evolution performance.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37248040</pmid><doi>10.1002/adma.202302285</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4427-6837</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-08, Vol.35 (32), p.e2302285-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2820971307
source Wiley Online Library Journals Frontfile Complete
subjects core/shell structure
Density functional theory
Electrocatalysts
hydrogen evolution reaction
Hydrogen evolution reactions
Hydrogen production
intercalation
Iridium
Materials science
Nanocrystals
Noble metals
Palladium
Reaction intermediates
strain
Tensile strain
title Precise Strain Tuning Boosts Electrocatalytic Hydrogen Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20Strain%20Tuning%20Boosts%20Electrocatalytic%20Hydrogen%20Generation&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Guo,%20Hongyu&rft.date=2023-08-01&rft.volume=35&rft.issue=32&rft.spage=e2302285&rft.epage=n/a&rft.pages=e2302285-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202302285&rft_dat=%3Cproquest_cross%3E2820971307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848120235&rft_id=info:pmid/37248040&rfr_iscdi=true