How many cosmological parameters
Constraints on cosmological parameters depend on the set of parameters chosen to define the model that is compared with observational data. I use the Akaike and Bayesian information criteria to carry out cosmological model selection, in order to determine the parameter set providing the preferred fi...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2004-07, Vol.351 (3), p.L49-L53 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | L53 |
---|---|
container_issue | 3 |
container_start_page | L49 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 351 |
creator | Liddle, Andrew R. |
description | Constraints on cosmological parameters depend on the set of parameters chosen to define the model that is compared with observational data. I use the Akaike and Bayesian information criteria to carry out cosmological model selection, in order to determine the parameter set providing the preferred fit to the data. Applying the information criteria to the current cosmological data sets indicates, for example, that spatially flat models are statistically preferred to closed models, and that possible running of the spectral index has lower significance than inferred from its confidence limits. I also discuss some problems of statistical assessment arising from there being a large number of ‘candidate’ cosmological parameters that can be investigated for possible cosmological implications, and argue that 95 per cent confidence is too low a threshold to identify robustly the need for new parameters in model fitting. The best present description of cosmological data uses a scale-invariant (n= 1) spectrum of Gaussian adiabatic perturbations in a spatially flat Universe, with the cosmological model requiring only five fundamental parameters to specify it fully. |
doi_str_mv | 10.1111/j.1365-2966.2004.08033.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28208442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28208442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4603-2688d9991c86b28ce6eb9153ca430fa8f18086fe39574ce6399b9a4c8c9e86673</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD9nALsGvOPaCBWqBIrUg8VLFZuQaB6UkTbFTtf17HFKVLd7Y0pwz1r0IRQQnJJzLeUKYSGOqhEgoxjzBEjOWbA5Qbz84RD2MWRrLjJBjdOL9HAeSUdFD0aheR5VebCNT-6ou68_C6DJaaqcr21jnT9FRrktvz3Z3H73e3rwMRvH48e5-cD2ODReYxVRI-aGUIkaKGZXGCjtTJGVGc4ZzLXMisRS5ZSrNeJgypWZKcyONslKIjPXRRbd36ervlfUNVIU3tiz1wtYrD1RSLDmnAZQdaFztvbM5LF1RabcFgqGtBObQJoc2ObSVwG8lsAnq-e4P7UPK3OmFKfyfnypKFeeBu-q4dVHa7b_3w-ThqX0FP-78wjd2s_e1-4KQNEthNH2H6VC8kfHwGSbsB9dfgaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28208442</pqid></control><display><type>article</type><title>How many cosmological parameters</title><source>Oxford Journals Open Access Collection</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liddle, Andrew R.</creator><creatorcontrib>Liddle, Andrew R.</creatorcontrib><description>Constraints on cosmological parameters depend on the set of parameters chosen to define the model that is compared with observational data. I use the Akaike and Bayesian information criteria to carry out cosmological model selection, in order to determine the parameter set providing the preferred fit to the data. Applying the information criteria to the current cosmological data sets indicates, for example, that spatially flat models are statistically preferred to closed models, and that possible running of the spectral index has lower significance than inferred from its confidence limits. I also discuss some problems of statistical assessment arising from there being a large number of ‘candidate’ cosmological parameters that can be investigated for possible cosmological implications, and argue that 95 per cent confidence is too low a threshold to identify robustly the need for new parameters in model fitting. The best present description of cosmological data uses a scale-invariant (n= 1) spectrum of Gaussian adiabatic perturbations in a spatially flat Universe, with the cosmological model requiring only five fundamental parameters to specify it fully.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2004.08033.x</identifier><identifier>CODEN: MNRAA4</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>cosmology: theory</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2004-07, Vol.351 (3), p.L49-L53</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4603-2688d9991c86b28ce6eb9153ca430fa8f18086fe39574ce6399b9a4c8c9e86673</citedby><cites>FETCH-LOGICAL-c4603-2688d9991c86b28ce6eb9153ca430fa8f18086fe39574ce6399b9a4c8c9e86673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2966.2004.08033.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2966.2004.08033.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15922944$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liddle, Andrew R.</creatorcontrib><title>How many cosmological parameters</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>Constraints on cosmological parameters depend on the set of parameters chosen to define the model that is compared with observational data. I use the Akaike and Bayesian information criteria to carry out cosmological model selection, in order to determine the parameter set providing the preferred fit to the data. Applying the information criteria to the current cosmological data sets indicates, for example, that spatially flat models are statistically preferred to closed models, and that possible running of the spectral index has lower significance than inferred from its confidence limits. I also discuss some problems of statistical assessment arising from there being a large number of ‘candidate’ cosmological parameters that can be investigated for possible cosmological implications, and argue that 95 per cent confidence is too low a threshold to identify robustly the need for new parameters in model fitting. The best present description of cosmological data uses a scale-invariant (n= 1) spectrum of Gaussian adiabatic perturbations in a spatially flat Universe, with the cosmological model requiring only five fundamental parameters to specify it fully.</description><subject>cosmology: theory</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwD9nALsGvOPaCBWqBIrUg8VLFZuQaB6UkTbFTtf17HFKVLd7Y0pwz1r0IRQQnJJzLeUKYSGOqhEgoxjzBEjOWbA5Qbz84RD2MWRrLjJBjdOL9HAeSUdFD0aheR5VebCNT-6ou68_C6DJaaqcr21jnT9FRrktvz3Z3H73e3rwMRvH48e5-cD2ODReYxVRI-aGUIkaKGZXGCjtTJGVGc4ZzLXMisRS5ZSrNeJgypWZKcyONslKIjPXRRbd36ervlfUNVIU3tiz1wtYrD1RSLDmnAZQdaFztvbM5LF1RabcFgqGtBObQJoc2ObSVwG8lsAnq-e4P7UPK3OmFKfyfnypKFeeBu-q4dVHa7b_3w-ThqX0FP-78wjd2s_e1-4KQNEthNH2H6VC8kfHwGSbsB9dfgaI</recordid><startdate>200407</startdate><enddate>200407</enddate><creator>Liddle, Andrew R.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science Ltd</general><general>Blackwell Science</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200407</creationdate><title>How many cosmological parameters</title><author>Liddle, Andrew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4603-2688d9991c86b28ce6eb9153ca430fa8f18086fe39574ce6399b9a4c8c9e86673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>cosmology: theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liddle, Andrew R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liddle, Andrew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How many cosmological parameters</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><addtitle>Mon. Not. R. Astron. Soc</addtitle><date>2004-07</date><risdate>2004</risdate><volume>351</volume><issue>3</issue><spage>L49</spage><epage>L53</epage><pages>L49-L53</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><coden>MNRAA4</coden><abstract>Constraints on cosmological parameters depend on the set of parameters chosen to define the model that is compared with observational data. I use the Akaike and Bayesian information criteria to carry out cosmological model selection, in order to determine the parameter set providing the preferred fit to the data. Applying the information criteria to the current cosmological data sets indicates, for example, that spatially flat models are statistically preferred to closed models, and that possible running of the spectral index has lower significance than inferred from its confidence limits. I also discuss some problems of statistical assessment arising from there being a large number of ‘candidate’ cosmological parameters that can be investigated for possible cosmological implications, and argue that 95 per cent confidence is too low a threshold to identify robustly the need for new parameters in model fitting. The best present description of cosmological data uses a scale-invariant (n= 1) spectrum of Gaussian adiabatic perturbations in a spatially flat Universe, with the cosmological model requiring only five fundamental parameters to specify it fully.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2966.2004.08033.x</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2004-07, Vol.351 (3), p.L49-L53 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_miscellaneous_28208442 |
source | Oxford Journals Open Access Collection; Wiley Online Library Journals Frontfile Complete |
subjects | cosmology: theory |
title | How many cosmological parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20many%20cosmological%20parameters&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Liddle,%20Andrew%20R.&rft.date=2004-07&rft.volume=351&rft.issue=3&rft.spage=L49&rft.epage=L53&rft.pages=L49-L53&rft.issn=0035-8711&rft.eissn=1365-2966&rft.coden=MNRAA4&rft_id=info:doi/10.1111/j.1365-2966.2004.08033.x&rft_dat=%3Cproquest_cross%3E28208442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28208442&rft_id=info:pmid/&rfr_iscdi=true |