Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding

We address an open question, regarding whether a lattice code with lattice decoding (as opposed to maximum-likelihood (ML) decoding) can achieve the additive white Gaussian noise (AWGN) channel capacity. We first demonstrate how minimum mean-square error (MMSE) scaling along with dithering (lattice...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2004-10, Vol.50 (10), p.2293-2314
Hauptverfasser: Erez, U., Zamir, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2314
container_issue 10
container_start_page 2293
container_title IEEE transactions on information theory
container_volume 50
creator Erez, U.
Zamir, R.
description We address an open question, regarding whether a lattice code with lattice decoding (as opposed to maximum-likelihood (ML) decoding) can achieve the additive white Gaussian noise (AWGN) channel capacity. We first demonstrate how minimum mean-square error (MMSE) scaling along with dithering (lattice randomization) techniques can transform the power-constrained AWGN channel into a modulo-lattice additive noise channel, whose effective noise is reduced by a factor of /spl radic/(1+SNR/SNR). For the resulting channel, a uniform input maximizes mutual information, which in the limit of large lattice dimension becomes 1/2 log (1+SNR), i.e., the full capacity of the original power constrained AWGN channel. We then show that capacity may also be achieved using nested lattice codes, the coarse lattice serving for shaping via the modulo-lattice transformation, the fine lattice for channel coding. We show that such pairs exist for any desired nesting ratio, i.e., for any signal-to-noise ratio (SNR). Furthermore, for the modulo-lattice additive noise channel lattice decoding is optimal. Finally, we show that the error exponent of the proposed scheme is lower bounded by the Poltyrev exponent.
doi_str_mv 10.1109/TIT.2004.834787
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28205045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1337105</ieee_id><sourcerecordid>28205045</sourcerecordid><originalsourceid>FETCH-LOGICAL-i261t-156282afb926ac3aa8bb597e6deebca6b0d912781ab6bbb4eb19373b1898f9f23</originalsourceid><addsrcrecordid>eNpdzktLw0AQB_BFFKyPswcvi6AoknZnk30dS_EFUkUrHsPuZtJuiZuapIrf3kgFwcMwDPObP0PIEbAhADOj2d1syBnLhjrNlFZbZABCqMRIkW2TAWOgE5Nlepfste2yHzMBfEAex34R8CPEOYURp1U9p-dw-Tx9uqB1pN0C6fj1Zkr9wsaIFf0M3YJWtuuCR4rR18XPpY0FLXAzHJCd0lYtHv72ffJyfTWb3Cb3Dzd3k_F9EriELgEhuea2dIZL61NrtXPCKJQFovNWOlYY4EqDddI5l6EDk6rUgTa6NCVP98nZJnfV1O9rbLv8LbQeq8pGrNdt3qczwTLRw5N_cFmvm9j_loMR2nAlWY9Of5Ftva3KxkYf2nzVhDfbfOUgQbG-ene8cQER_9ZpqoCJ9BtFe3Fz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195892760</pqid></control><display><type>article</type><title>Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding</title><source>IEEE Electronic Library (IEL)</source><creator>Erez, U. ; Zamir, R.</creator><creatorcontrib>Erez, U. ; Zamir, R.</creatorcontrib><description>We address an open question, regarding whether a lattice code with lattice decoding (as opposed to maximum-likelihood (ML) decoding) can achieve the additive white Gaussian noise (AWGN) channel capacity. We first demonstrate how minimum mean-square error (MMSE) scaling along with dithering (lattice randomization) techniques can transform the power-constrained AWGN channel into a modulo-lattice additive noise channel, whose effective noise is reduced by a factor of /spl radic/(1+SNR/SNR). For the resulting channel, a uniform input maximizes mutual information, which in the limit of large lattice dimension becomes 1/2 log (1+SNR), i.e., the full capacity of the original power constrained AWGN channel. We then show that capacity may also be achieved using nested lattice codes, the coarse lattice serving for shaping via the modulo-lattice transformation, the fine lattice for channel coding. We show that such pairs exist for any desired nesting ratio, i.e., for any signal-to-noise ratio (SNR). Furthermore, for the modulo-lattice additive noise channel lattice decoding is optimal. Finally, we show that the error exponent of the proposed scheme is lower bounded by the Poltyrev exponent.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2004.834787</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Additive noise ; Additive white noise ; Applied sciences ; AWGN channels ; Channel capacity ; Codes ; Coding, codes ; Exact sciences and technology ; Gaussian noise ; Information, signal and communications theory ; Lattice theory ; Lattices ; Maximum likelihood decoding ; Mean square errors ; Mutual information ; Noise reduction ; Normal distribution ; Signal and communications theory ; Signal to noise ratio ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments)</subject><ispartof>IEEE transactions on information theory, 2004-10, Vol.50 (10), p.2293-2314</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1337105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1337105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16170617$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Erez, U.</creatorcontrib><creatorcontrib>Zamir, R.</creatorcontrib><title>Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We address an open question, regarding whether a lattice code with lattice decoding (as opposed to maximum-likelihood (ML) decoding) can achieve the additive white Gaussian noise (AWGN) channel capacity. We first demonstrate how minimum mean-square error (MMSE) scaling along with dithering (lattice randomization) techniques can transform the power-constrained AWGN channel into a modulo-lattice additive noise channel, whose effective noise is reduced by a factor of /spl radic/(1+SNR/SNR). For the resulting channel, a uniform input maximizes mutual information, which in the limit of large lattice dimension becomes 1/2 log (1+SNR), i.e., the full capacity of the original power constrained AWGN channel. We then show that capacity may also be achieved using nested lattice codes, the coarse lattice serving for shaping via the modulo-lattice transformation, the fine lattice for channel coding. We show that such pairs exist for any desired nesting ratio, i.e., for any signal-to-noise ratio (SNR). Furthermore, for the modulo-lattice additive noise channel lattice decoding is optimal. Finally, we show that the error exponent of the proposed scheme is lower bounded by the Poltyrev exponent.</description><subject>Additive noise</subject><subject>Additive white noise</subject><subject>Applied sciences</subject><subject>AWGN channels</subject><subject>Channel capacity</subject><subject>Codes</subject><subject>Coding, codes</subject><subject>Exact sciences and technology</subject><subject>Gaussian noise</subject><subject>Information, signal and communications theory</subject><subject>Lattice theory</subject><subject>Lattices</subject><subject>Maximum likelihood decoding</subject><subject>Mean square errors</subject><subject>Mutual information</subject><subject>Noise reduction</subject><subject>Normal distribution</subject><subject>Signal and communications theory</subject><subject>Signal to noise ratio</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdzktLw0AQB_BFFKyPswcvi6AoknZnk30dS_EFUkUrHsPuZtJuiZuapIrf3kgFwcMwDPObP0PIEbAhADOj2d1syBnLhjrNlFZbZABCqMRIkW2TAWOgE5Nlepfste2yHzMBfEAex34R8CPEOYURp1U9p-dw-Tx9uqB1pN0C6fj1Zkr9wsaIFf0M3YJWtuuCR4rR18XPpY0FLXAzHJCd0lYtHv72ffJyfTWb3Cb3Dzd3k_F9EriELgEhuea2dIZL61NrtXPCKJQFovNWOlYY4EqDddI5l6EDk6rUgTa6NCVP98nZJnfV1O9rbLv8LbQeq8pGrNdt3qczwTLRw5N_cFmvm9j_loMR2nAlWY9Of5Ftva3KxkYf2nzVhDfbfOUgQbG-ene8cQER_9ZpqoCJ9BtFe3Fz</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Erez, U.</creator><creator>Zamir, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20041001</creationdate><title>Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding</title><author>Erez, U. ; Zamir, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i261t-156282afb926ac3aa8bb597e6deebca6b0d912781ab6bbb4eb19373b1898f9f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Additive noise</topic><topic>Additive white noise</topic><topic>Applied sciences</topic><topic>AWGN channels</topic><topic>Channel capacity</topic><topic>Codes</topic><topic>Coding, codes</topic><topic>Exact sciences and technology</topic><topic>Gaussian noise</topic><topic>Information, signal and communications theory</topic><topic>Lattice theory</topic><topic>Lattices</topic><topic>Maximum likelihood decoding</topic><topic>Mean square errors</topic><topic>Mutual information</topic><topic>Noise reduction</topic><topic>Normal distribution</topic><topic>Signal and communications theory</topic><topic>Signal to noise ratio</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erez, U.</creatorcontrib><creatorcontrib>Zamir, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Erez, U.</au><au>Zamir, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2004-10-01</date><risdate>2004</risdate><volume>50</volume><issue>10</issue><spage>2293</spage><epage>2314</epage><pages>2293-2314</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We address an open question, regarding whether a lattice code with lattice decoding (as opposed to maximum-likelihood (ML) decoding) can achieve the additive white Gaussian noise (AWGN) channel capacity. We first demonstrate how minimum mean-square error (MMSE) scaling along with dithering (lattice randomization) techniques can transform the power-constrained AWGN channel into a modulo-lattice additive noise channel, whose effective noise is reduced by a factor of /spl radic/(1+SNR/SNR). For the resulting channel, a uniform input maximizes mutual information, which in the limit of large lattice dimension becomes 1/2 log (1+SNR), i.e., the full capacity of the original power constrained AWGN channel. We then show that capacity may also be achieved using nested lattice codes, the coarse lattice serving for shaping via the modulo-lattice transformation, the fine lattice for channel coding. We show that such pairs exist for any desired nesting ratio, i.e., for any signal-to-noise ratio (SNR). Furthermore, for the modulo-lattice additive noise channel lattice decoding is optimal. Finally, we show that the error exponent of the proposed scheme is lower bounded by the Poltyrev exponent.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2004.834787</doi><tpages>22</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2004-10, Vol.50 (10), p.2293-2314
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_28205045
source IEEE Electronic Library (IEL)
subjects Additive noise
Additive white noise
Applied sciences
AWGN channels
Channel capacity
Codes
Coding, codes
Exact sciences and technology
Gaussian noise
Information, signal and communications theory
Lattice theory
Lattices
Maximum likelihood decoding
Mean square errors
Mutual information
Noise reduction
Normal distribution
Signal and communications theory
Signal to noise ratio
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Transmission and modulation (techniques and equipments)
title Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%201/2%20log%20(1+SNR)%20on%20the%20AWGN%20channel%20with%20lattice%20encoding%20and%20decoding&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Erez,%20U.&rft.date=2004-10-01&rft.volume=50&rft.issue=10&rft.spage=2293&rft.epage=2314&rft.pages=2293-2314&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2004.834787&rft_dat=%3Cproquest_RIE%3E28205045%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195892760&rft_id=info:pmid/&rft_ieee_id=1337105&rfr_iscdi=true