Long-Cycling-Life Sodium-Ion Battery Using Binary Metal Sulfide Hybrid Nanocages as Anode

Due to the relatively high capacity and lower cost, transition metal sulfides (TMS) as anode show promising potential in sodium-ion batteries (SIBs). Herein, a binary metal sulfide hybrid consisting of carbon encapsulated CoS/Cu S nanocages (CoS/Cu S@C-NC) is constructed. The interlocked hetero-arch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-09, Vol.19 (39), p.e2302706-e2302706
Hauptverfasser: Huang, Xiaofei, Tao, Kehao, Han, Tianli, Li, Jinjin, Zhang, Huigang, Hu, Chaoquan, Niu, Junjie, Liu, Jinyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2302706
container_issue 39
container_start_page e2302706
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Huang, Xiaofei
Tao, Kehao
Han, Tianli
Li, Jinjin
Zhang, Huigang
Hu, Chaoquan
Niu, Junjie
Liu, Jinyun
description Due to the relatively high capacity and lower cost, transition metal sulfides (TMS) as anode show promising potential in sodium-ion batteries (SIBs). Herein, a binary metal sulfide hybrid consisting of carbon encapsulated CoS/Cu S nanocages (CoS/Cu S@C-NC) is constructed. The interlocked hetero-architecture filled with conductive carbon accelerates the Na /e transfer, thus leading to improved electrochemical kinetics. Also the protective carbon layer can provide better volume accommondation upon charging/discharging. As a result, the battery with CoS/Cu S@C-NC as anode displays a high capacity of 435.3 mAh g after 1000 cycles at 2.0 A g (≈3.4 C). Under a higher rate of 10.0 A g (≈17 C), a capacity of as high as 347.2 mAh g is still remained after long 2300 cycles. The capacity decay per cycle is only 0.017%. The battery also exhibits a better temperature tolerance at 50 and -5 °C. A low internal impedance analyzed by X-ray diffraction patterns and galvanostatic intermittent titration technique, narrow band gap, and high density of states obtained by first-principle calculations of the binary sulfides, ensure the rapid Na /e transport. The long-cycling-life SIB using binary metal sulfide hybrid nanocages as anode shows promising applications in versatile electronic devices.
doi_str_mv 10.1002/smll.202302706
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2820336175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869152896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-87aefb9227671c5e5074c9d1d55ad514873e7a4363924968c982f14277a34c323</originalsourceid><addsrcrecordid>eNpdkDFPwzAQhS0EoqWwMiJLLCwp9tmxk7GtgFYKMJQOTJEbO1UqJy5xMvTf46qlA9O70333dPcQuqdkTAmBZ19bOwYCjIAk4gINqaAsEgmkl-eakgG68X5LCKPA5TUaMAlcgIAh-s5cs4lm-8JWQbOqNHjpdNXX0cI1eKq6zrR7vPJhiqdVo0Lzbjpl8bK3ZaUNnu_XbaXxh2pcoTbGY-XxpHHa3KKrUllv7k46QqvXl6_ZPMo-3xazSRYVDFgXJVKZcp0CSCFpEZuYSF6kmuo4VjqmPJHMSMWZYCnwVCRFmkBJOUipGD9YjNDT0XfXup_e-C6vK18Ya1VjXO9zSIAwJqiMA_r4D926vm3CdYESKY0hSUWgxkeqaJ33rSnzXVvV4fOckvwQen4IPT-HHhYeTrb9ujb6jP-lzH4B3Lx6Wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869152896</pqid></control><display><type>article</type><title>Long-Cycling-Life Sodium-Ion Battery Using Binary Metal Sulfide Hybrid Nanocages as Anode</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Huang, Xiaofei ; Tao, Kehao ; Han, Tianli ; Li, Jinjin ; Zhang, Huigang ; Hu, Chaoquan ; Niu, Junjie ; Liu, Jinyun</creator><creatorcontrib>Huang, Xiaofei ; Tao, Kehao ; Han, Tianli ; Li, Jinjin ; Zhang, Huigang ; Hu, Chaoquan ; Niu, Junjie ; Liu, Jinyun</creatorcontrib><description>Due to the relatively high capacity and lower cost, transition metal sulfides (TMS) as anode show promising potential in sodium-ion batteries (SIBs). Herein, a binary metal sulfide hybrid consisting of carbon encapsulated CoS/Cu S nanocages (CoS/Cu S@C-NC) is constructed. The interlocked hetero-architecture filled with conductive carbon accelerates the Na /e transfer, thus leading to improved electrochemical kinetics. Also the protective carbon layer can provide better volume accommondation upon charging/discharging. As a result, the battery with CoS/Cu S@C-NC as anode displays a high capacity of 435.3 mAh g after 1000 cycles at 2.0 A g (≈3.4 C). Under a higher rate of 10.0 A g (≈17 C), a capacity of as high as 347.2 mAh g is still remained after long 2300 cycles. The capacity decay per cycle is only 0.017%. The battery also exhibits a better temperature tolerance at 50 and -5 °C. A low internal impedance analyzed by X-ray diffraction patterns and galvanostatic intermittent titration technique, narrow band gap, and high density of states obtained by first-principle calculations of the binary sulfides, ensure the rapid Na /e transport. The long-cycling-life SIB using binary metal sulfide hybrid nanocages as anode shows promising applications in versatile electronic devices.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202302706</identifier><identifier>PMID: 37246262</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Carbon ; Copper sulfides ; Diffraction patterns ; Metal sulfides ; Nanotechnology ; Sodium ; Sodium-ion batteries ; Titration ; Transition metals</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (39), p.e2302706-e2302706</ispartof><rights>2023 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-87aefb9227671c5e5074c9d1d55ad514873e7a4363924968c982f14277a34c323</citedby><cites>FETCH-LOGICAL-c323t-87aefb9227671c5e5074c9d1d55ad514873e7a4363924968c982f14277a34c323</cites><orcidid>0000-0003-0093-7357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37246262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Xiaofei</creatorcontrib><creatorcontrib>Tao, Kehao</creatorcontrib><creatorcontrib>Han, Tianli</creatorcontrib><creatorcontrib>Li, Jinjin</creatorcontrib><creatorcontrib>Zhang, Huigang</creatorcontrib><creatorcontrib>Hu, Chaoquan</creatorcontrib><creatorcontrib>Niu, Junjie</creatorcontrib><creatorcontrib>Liu, Jinyun</creatorcontrib><title>Long-Cycling-Life Sodium-Ion Battery Using Binary Metal Sulfide Hybrid Nanocages as Anode</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Due to the relatively high capacity and lower cost, transition metal sulfides (TMS) as anode show promising potential in sodium-ion batteries (SIBs). Herein, a binary metal sulfide hybrid consisting of carbon encapsulated CoS/Cu S nanocages (CoS/Cu S@C-NC) is constructed. The interlocked hetero-architecture filled with conductive carbon accelerates the Na /e transfer, thus leading to improved electrochemical kinetics. Also the protective carbon layer can provide better volume accommondation upon charging/discharging. As a result, the battery with CoS/Cu S@C-NC as anode displays a high capacity of 435.3 mAh g after 1000 cycles at 2.0 A g (≈3.4 C). Under a higher rate of 10.0 A g (≈17 C), a capacity of as high as 347.2 mAh g is still remained after long 2300 cycles. The capacity decay per cycle is only 0.017%. The battery also exhibits a better temperature tolerance at 50 and -5 °C. A low internal impedance analyzed by X-ray diffraction patterns and galvanostatic intermittent titration technique, narrow band gap, and high density of states obtained by first-principle calculations of the binary sulfides, ensure the rapid Na /e transport. The long-cycling-life SIB using binary metal sulfide hybrid nanocages as anode shows promising applications in versatile electronic devices.</description><subject>Batteries</subject><subject>Carbon</subject><subject>Copper sulfides</subject><subject>Diffraction patterns</subject><subject>Metal sulfides</subject><subject>Nanotechnology</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Titration</subject><subject>Transition metals</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkDFPwzAQhS0EoqWwMiJLLCwp9tmxk7GtgFYKMJQOTJEbO1UqJy5xMvTf46qlA9O70333dPcQuqdkTAmBZ19bOwYCjIAk4gINqaAsEgmkl-eakgG68X5LCKPA5TUaMAlcgIAh-s5cs4lm-8JWQbOqNHjpdNXX0cI1eKq6zrR7vPJhiqdVo0Lzbjpl8bK3ZaUNnu_XbaXxh2pcoTbGY-XxpHHa3KKrUllv7k46QqvXl6_ZPMo-3xazSRYVDFgXJVKZcp0CSCFpEZuYSF6kmuo4VjqmPJHMSMWZYCnwVCRFmkBJOUipGD9YjNDT0XfXup_e-C6vK18Ya1VjXO9zSIAwJqiMA_r4D926vm3CdYESKY0hSUWgxkeqaJ33rSnzXVvV4fOckvwQen4IPT-HHhYeTrb9ujb6jP-lzH4B3Lx6Wg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Huang, Xiaofei</creator><creator>Tao, Kehao</creator><creator>Han, Tianli</creator><creator>Li, Jinjin</creator><creator>Zhang, Huigang</creator><creator>Hu, Chaoquan</creator><creator>Niu, Junjie</creator><creator>Liu, Jinyun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0093-7357</orcidid></search><sort><creationdate>20230901</creationdate><title>Long-Cycling-Life Sodium-Ion Battery Using Binary Metal Sulfide Hybrid Nanocages as Anode</title><author>Huang, Xiaofei ; Tao, Kehao ; Han, Tianli ; Li, Jinjin ; Zhang, Huigang ; Hu, Chaoquan ; Niu, Junjie ; Liu, Jinyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-87aefb9227671c5e5074c9d1d55ad514873e7a4363924968c982f14277a34c323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Batteries</topic><topic>Carbon</topic><topic>Copper sulfides</topic><topic>Diffraction patterns</topic><topic>Metal sulfides</topic><topic>Nanotechnology</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Titration</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xiaofei</creatorcontrib><creatorcontrib>Tao, Kehao</creatorcontrib><creatorcontrib>Han, Tianli</creatorcontrib><creatorcontrib>Li, Jinjin</creatorcontrib><creatorcontrib>Zhang, Huigang</creatorcontrib><creatorcontrib>Hu, Chaoquan</creatorcontrib><creatorcontrib>Niu, Junjie</creatorcontrib><creatorcontrib>Liu, Jinyun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xiaofei</au><au>Tao, Kehao</au><au>Han, Tianli</au><au>Li, Jinjin</au><au>Zhang, Huigang</au><au>Hu, Chaoquan</au><au>Niu, Junjie</au><au>Liu, Jinyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-Cycling-Life Sodium-Ion Battery Using Binary Metal Sulfide Hybrid Nanocages as Anode</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>19</volume><issue>39</issue><spage>e2302706</spage><epage>e2302706</epage><pages>e2302706-e2302706</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Due to the relatively high capacity and lower cost, transition metal sulfides (TMS) as anode show promising potential in sodium-ion batteries (SIBs). Herein, a binary metal sulfide hybrid consisting of carbon encapsulated CoS/Cu S nanocages (CoS/Cu S@C-NC) is constructed. The interlocked hetero-architecture filled with conductive carbon accelerates the Na /e transfer, thus leading to improved electrochemical kinetics. Also the protective carbon layer can provide better volume accommondation upon charging/discharging. As a result, the battery with CoS/Cu S@C-NC as anode displays a high capacity of 435.3 mAh g after 1000 cycles at 2.0 A g (≈3.4 C). Under a higher rate of 10.0 A g (≈17 C), a capacity of as high as 347.2 mAh g is still remained after long 2300 cycles. The capacity decay per cycle is only 0.017%. The battery also exhibits a better temperature tolerance at 50 and -5 °C. A low internal impedance analyzed by X-ray diffraction patterns and galvanostatic intermittent titration technique, narrow band gap, and high density of states obtained by first-principle calculations of the binary sulfides, ensure the rapid Na /e transport. The long-cycling-life SIB using binary metal sulfide hybrid nanocages as anode shows promising applications in versatile electronic devices.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37246262</pmid><doi>10.1002/smll.202302706</doi><orcidid>https://orcid.org/0000-0003-0093-7357</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (39), p.e2302706-e2302706
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2820336175
source Wiley Online Library - AutoHoldings Journals
subjects Batteries
Carbon
Copper sulfides
Diffraction patterns
Metal sulfides
Nanotechnology
Sodium
Sodium-ion batteries
Titration
Transition metals
title Long-Cycling-Life Sodium-Ion Battery Using Binary Metal Sulfide Hybrid Nanocages as Anode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-Cycling-Life%20Sodium-Ion%20Battery%20Using%20Binary%20Metal%20Sulfide%20Hybrid%20Nanocages%20as%20Anode&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Huang,%20Xiaofei&rft.date=2023-09-01&rft.volume=19&rft.issue=39&rft.spage=e2302706&rft.epage=e2302706&rft.pages=e2302706-e2302706&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202302706&rft_dat=%3Cproquest_cross%3E2869152896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869152896&rft_id=info:pmid/37246262&rfr_iscdi=true