Long-Cycling-Life Sodium-Ion Battery Using Binary Metal Sulfide Hybrid Nanocages as Anode
Due to the relatively high capacity and lower cost, transition metal sulfides (TMS) as anode show promising potential in sodium-ion batteries (SIBs). Herein, a binary metal sulfide hybrid consisting of carbon encapsulated CoS/Cu S nanocages (CoS/Cu S@C-NC) is constructed. The interlocked hetero-arch...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-09, Vol.19 (39), p.e2302706-e2302706 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2302706 |
---|---|
container_issue | 39 |
container_start_page | e2302706 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Huang, Xiaofei Tao, Kehao Han, Tianli Li, Jinjin Zhang, Huigang Hu, Chaoquan Niu, Junjie Liu, Jinyun |
description | Due to the relatively high capacity and lower cost, transition metal sulfides (TMS) as anode show promising potential in sodium-ion batteries (SIBs). Herein, a binary metal sulfide hybrid consisting of carbon encapsulated CoS/Cu
S nanocages (CoS/Cu
S@C-NC) is constructed. The interlocked hetero-architecture filled with conductive carbon accelerates the Na
/e
transfer, thus leading to improved electrochemical kinetics. Also the protective carbon layer can provide better volume accommondation upon charging/discharging. As a result, the battery with CoS/Cu
S@C-NC as anode displays a high capacity of 435.3 mAh g
after 1000 cycles at 2.0 A g
(≈3.4 C). Under a higher rate of 10.0 A g
(≈17 C), a capacity of as high as 347.2 mAh g
is still remained after long 2300 cycles. The capacity decay per cycle is only 0.017%. The battery also exhibits a better temperature tolerance at 50 and -5 °C. A low internal impedance analyzed by X-ray diffraction patterns and galvanostatic intermittent titration technique, narrow band gap, and high density of states obtained by first-principle calculations of the binary sulfides, ensure the rapid Na
/e
transport. The long-cycling-life SIB using binary metal sulfide hybrid nanocages as anode shows promising applications in versatile electronic devices. |
doi_str_mv | 10.1002/smll.202302706 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2820336175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869152896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-87aefb9227671c5e5074c9d1d55ad514873e7a4363924968c982f14277a34c323</originalsourceid><addsrcrecordid>eNpdkDFPwzAQhS0EoqWwMiJLLCwp9tmxk7GtgFYKMJQOTJEbO1UqJy5xMvTf46qlA9O70333dPcQuqdkTAmBZ19bOwYCjIAk4gINqaAsEgmkl-eakgG68X5LCKPA5TUaMAlcgIAh-s5cs4lm-8JWQbOqNHjpdNXX0cI1eKq6zrR7vPJhiqdVo0Lzbjpl8bK3ZaUNnu_XbaXxh2pcoTbGY-XxpHHa3KKrUllv7k46QqvXl6_ZPMo-3xazSRYVDFgXJVKZcp0CSCFpEZuYSF6kmuo4VjqmPJHMSMWZYCnwVCRFmkBJOUipGD9YjNDT0XfXup_e-C6vK18Ya1VjXO9zSIAwJqiMA_r4D926vm3CdYESKY0hSUWgxkeqaJ33rSnzXVvV4fOckvwQen4IPT-HHhYeTrb9ujb6jP-lzH4B3Lx6Wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869152896</pqid></control><display><type>article</type><title>Long-Cycling-Life Sodium-Ion Battery Using Binary Metal Sulfide Hybrid Nanocages as Anode</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Huang, Xiaofei ; Tao, Kehao ; Han, Tianli ; Li, Jinjin ; Zhang, Huigang ; Hu, Chaoquan ; Niu, Junjie ; Liu, Jinyun</creator><creatorcontrib>Huang, Xiaofei ; Tao, Kehao ; Han, Tianli ; Li, Jinjin ; Zhang, Huigang ; Hu, Chaoquan ; Niu, Junjie ; Liu, Jinyun</creatorcontrib><description>Due to the relatively high capacity and lower cost, transition metal sulfides (TMS) as anode show promising potential in sodium-ion batteries (SIBs). Herein, a binary metal sulfide hybrid consisting of carbon encapsulated CoS/Cu
S nanocages (CoS/Cu
S@C-NC) is constructed. The interlocked hetero-architecture filled with conductive carbon accelerates the Na
/e
transfer, thus leading to improved electrochemical kinetics. Also the protective carbon layer can provide better volume accommondation upon charging/discharging. As a result, the battery with CoS/Cu
S@C-NC as anode displays a high capacity of 435.3 mAh g
after 1000 cycles at 2.0 A g
(≈3.4 C). Under a higher rate of 10.0 A g
(≈17 C), a capacity of as high as 347.2 mAh g
is still remained after long 2300 cycles. The capacity decay per cycle is only 0.017%. The battery also exhibits a better temperature tolerance at 50 and -5 °C. A low internal impedance analyzed by X-ray diffraction patterns and galvanostatic intermittent titration technique, narrow band gap, and high density of states obtained by first-principle calculations of the binary sulfides, ensure the rapid Na
/e
transport. The long-cycling-life SIB using binary metal sulfide hybrid nanocages as anode shows promising applications in versatile electronic devices.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202302706</identifier><identifier>PMID: 37246262</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Carbon ; Copper sulfides ; Diffraction patterns ; Metal sulfides ; Nanotechnology ; Sodium ; Sodium-ion batteries ; Titration ; Transition metals</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (39), p.e2302706-e2302706</ispartof><rights>2023 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-87aefb9227671c5e5074c9d1d55ad514873e7a4363924968c982f14277a34c323</citedby><cites>FETCH-LOGICAL-c323t-87aefb9227671c5e5074c9d1d55ad514873e7a4363924968c982f14277a34c323</cites><orcidid>0000-0003-0093-7357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37246262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Xiaofei</creatorcontrib><creatorcontrib>Tao, Kehao</creatorcontrib><creatorcontrib>Han, Tianli</creatorcontrib><creatorcontrib>Li, Jinjin</creatorcontrib><creatorcontrib>Zhang, Huigang</creatorcontrib><creatorcontrib>Hu, Chaoquan</creatorcontrib><creatorcontrib>Niu, Junjie</creatorcontrib><creatorcontrib>Liu, Jinyun</creatorcontrib><title>Long-Cycling-Life Sodium-Ion Battery Using Binary Metal Sulfide Hybrid Nanocages as Anode</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Due to the relatively high capacity and lower cost, transition metal sulfides (TMS) as anode show promising potential in sodium-ion batteries (SIBs). Herein, a binary metal sulfide hybrid consisting of carbon encapsulated CoS/Cu
S nanocages (CoS/Cu
S@C-NC) is constructed. The interlocked hetero-architecture filled with conductive carbon accelerates the Na
/e
transfer, thus leading to improved electrochemical kinetics. Also the protective carbon layer can provide better volume accommondation upon charging/discharging. As a result, the battery with CoS/Cu
S@C-NC as anode displays a high capacity of 435.3 mAh g
after 1000 cycles at 2.0 A g
(≈3.4 C). Under a higher rate of 10.0 A g
(≈17 C), a capacity of as high as 347.2 mAh g
is still remained after long 2300 cycles. The capacity decay per cycle is only 0.017%. The battery also exhibits a better temperature tolerance at 50 and -5 °C. A low internal impedance analyzed by X-ray diffraction patterns and galvanostatic intermittent titration technique, narrow band gap, and high density of states obtained by first-principle calculations of the binary sulfides, ensure the rapid Na
/e
transport. The long-cycling-life SIB using binary metal sulfide hybrid nanocages as anode shows promising applications in versatile electronic devices.</description><subject>Batteries</subject><subject>Carbon</subject><subject>Copper sulfides</subject><subject>Diffraction patterns</subject><subject>Metal sulfides</subject><subject>Nanotechnology</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Titration</subject><subject>Transition metals</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkDFPwzAQhS0EoqWwMiJLLCwp9tmxk7GtgFYKMJQOTJEbO1UqJy5xMvTf46qlA9O70333dPcQuqdkTAmBZ19bOwYCjIAk4gINqaAsEgmkl-eakgG68X5LCKPA5TUaMAlcgIAh-s5cs4lm-8JWQbOqNHjpdNXX0cI1eKq6zrR7vPJhiqdVo0Lzbjpl8bK3ZaUNnu_XbaXxh2pcoTbGY-XxpHHa3KKrUllv7k46QqvXl6_ZPMo-3xazSRYVDFgXJVKZcp0CSCFpEZuYSF6kmuo4VjqmPJHMSMWZYCnwVCRFmkBJOUipGD9YjNDT0XfXup_e-C6vK18Ya1VjXO9zSIAwJqiMA_r4D926vm3CdYESKY0hSUWgxkeqaJ33rSnzXVvV4fOckvwQen4IPT-HHhYeTrb9ujb6jP-lzH4B3Lx6Wg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Huang, Xiaofei</creator><creator>Tao, Kehao</creator><creator>Han, Tianli</creator><creator>Li, Jinjin</creator><creator>Zhang, Huigang</creator><creator>Hu, Chaoquan</creator><creator>Niu, Junjie</creator><creator>Liu, Jinyun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0093-7357</orcidid></search><sort><creationdate>20230901</creationdate><title>Long-Cycling-Life Sodium-Ion Battery Using Binary Metal Sulfide Hybrid Nanocages as Anode</title><author>Huang, Xiaofei ; Tao, Kehao ; Han, Tianli ; Li, Jinjin ; Zhang, Huigang ; Hu, Chaoquan ; Niu, Junjie ; Liu, Jinyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-87aefb9227671c5e5074c9d1d55ad514873e7a4363924968c982f14277a34c323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Batteries</topic><topic>Carbon</topic><topic>Copper sulfides</topic><topic>Diffraction patterns</topic><topic>Metal sulfides</topic><topic>Nanotechnology</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Titration</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xiaofei</creatorcontrib><creatorcontrib>Tao, Kehao</creatorcontrib><creatorcontrib>Han, Tianli</creatorcontrib><creatorcontrib>Li, Jinjin</creatorcontrib><creatorcontrib>Zhang, Huigang</creatorcontrib><creatorcontrib>Hu, Chaoquan</creatorcontrib><creatorcontrib>Niu, Junjie</creatorcontrib><creatorcontrib>Liu, Jinyun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xiaofei</au><au>Tao, Kehao</au><au>Han, Tianli</au><au>Li, Jinjin</au><au>Zhang, Huigang</au><au>Hu, Chaoquan</au><au>Niu, Junjie</au><au>Liu, Jinyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-Cycling-Life Sodium-Ion Battery Using Binary Metal Sulfide Hybrid Nanocages as Anode</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>19</volume><issue>39</issue><spage>e2302706</spage><epage>e2302706</epage><pages>e2302706-e2302706</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Due to the relatively high capacity and lower cost, transition metal sulfides (TMS) as anode show promising potential in sodium-ion batteries (SIBs). Herein, a binary metal sulfide hybrid consisting of carbon encapsulated CoS/Cu
S nanocages (CoS/Cu
S@C-NC) is constructed. The interlocked hetero-architecture filled with conductive carbon accelerates the Na
/e
transfer, thus leading to improved electrochemical kinetics. Also the protective carbon layer can provide better volume accommondation upon charging/discharging. As a result, the battery with CoS/Cu
S@C-NC as anode displays a high capacity of 435.3 mAh g
after 1000 cycles at 2.0 A g
(≈3.4 C). Under a higher rate of 10.0 A g
(≈17 C), a capacity of as high as 347.2 mAh g
is still remained after long 2300 cycles. The capacity decay per cycle is only 0.017%. The battery also exhibits a better temperature tolerance at 50 and -5 °C. A low internal impedance analyzed by X-ray diffraction patterns and galvanostatic intermittent titration technique, narrow band gap, and high density of states obtained by first-principle calculations of the binary sulfides, ensure the rapid Na
/e
transport. The long-cycling-life SIB using binary metal sulfide hybrid nanocages as anode shows promising applications in versatile electronic devices.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37246262</pmid><doi>10.1002/smll.202302706</doi><orcidid>https://orcid.org/0000-0003-0093-7357</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (39), p.e2302706-e2302706 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2820336175 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Batteries Carbon Copper sulfides Diffraction patterns Metal sulfides Nanotechnology Sodium Sodium-ion batteries Titration Transition metals |
title | Long-Cycling-Life Sodium-Ion Battery Using Binary Metal Sulfide Hybrid Nanocages as Anode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-Cycling-Life%20Sodium-Ion%20Battery%20Using%20Binary%20Metal%20Sulfide%20Hybrid%20Nanocages%20as%20Anode&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Huang,%20Xiaofei&rft.date=2023-09-01&rft.volume=19&rft.issue=39&rft.spage=e2302706&rft.epage=e2302706&rft.pages=e2302706-e2302706&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202302706&rft_dat=%3Cproquest_cross%3E2869152896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869152896&rft_id=info:pmid/37246262&rfr_iscdi=true |