Thin Film Composite Membranes as a New Category of Alkaline Water Electrolysis Membranes

Alkaline water electrolysis (AWE) is considered a promising technology for green hydrogen (H ) production. Conventional diaphragm-type porous membranes have a high risk of explosion owing to their high gas crossover, while nonporous anion exchange membranes lack mechanical and thermochemical stabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-09, Vol.19 (37), p.e2300825-e2300825
Hauptverfasser: Choi, Juyeon, Kim, Hansoo, Jeon, Sungkwon, Shin, Min Gyu, Seo, Jin Young, Park, You-In, Park, Hosik, Lee, Albert S, Lee, Changsoo, Kim, MinJoong, Cho, Hyun-Seok, Lee, Jung-Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2300825
container_issue 37
container_start_page e2300825
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Choi, Juyeon
Kim, Hansoo
Jeon, Sungkwon
Shin, Min Gyu
Seo, Jin Young
Park, You-In
Park, Hosik
Lee, Albert S
Lee, Changsoo
Kim, MinJoong
Cho, Hyun-Seok
Lee, Jung-Hyun
description Alkaline water electrolysis (AWE) is considered a promising technology for green hydrogen (H ) production. Conventional diaphragm-type porous membranes have a high risk of explosion owing to their high gas crossover, while nonporous anion exchange membranes lack mechanical and thermochemical stability, limiting their practical application. Herein, a thin film composite (TFC) membrane is proposed as a new category of AWE membranes. The TFC membrane consists of an ultrathin quaternary ammonium (QA) selective layer formed via Menshutkin reaction-based interfacial polymerization on a porous polyethylene (PE) support. The dense, alkaline-stable, and highly anion-conductive QA layer prevents gas crossover while promoting anion transport. The PE support reinforces the mechanical and thermochemical properties, while its highly porous and thin structure reduces mass transport resistance across the TFC membrane. Consequently, the TFC membrane exhibits unprecedentedly high AWE performance (1.16 A cm at 1.8 V) using nonprecious group metal electrodes with a potassium hydroxide (25 wt%) aqueous solution at 80 °C, significantly outperforming commercial and other lab-made AWE membranes. Moreover, the TFC membrane demonstrates remarkably low gas crossover, long-term stability, and stack cell operability, thereby ensuring its commercial viability for green H production. This strategy provides an advanced material platform for energy and environmental applications.
doi_str_mv 10.1002/smll.202300825
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2820029812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820029812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-763224fa98855dca524c8c3e68605cf108b46e5b784343185b960f30e5faf2c83</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4Mobk6vHiXgxUtnfjRpehxlU2HqZaK3kmaJdqbNTFpk_70ZmxOEB-_x-LzHlw8AlxiNMULkNjTWjgkiFCFB2BEYYo5pwgXJjw8zRgNwFsIKIYpJmp2CAc0IxYzRIXhbfNQtnNW2gYVr1i7UnYaPuqm8bHWAMhZ80t-wkJ1-d34DnYET-ylt3Wr4GpceTq1WnXd2E-rwd3oOToy0QV_s-wi8zKaL4j6ZP989FJN5oiihXZJxSkhqZC4EY0slGUmVUFRzwRFTBiNRpVyzKhMpTSkWrMo5MhRpZqQhStARuNn9XXv31evQlU0dlLY2hnB9KIkg0VMuMIno9T905XrfxnSR4inK8pzmkRrvKOVdCF6bcu3rRvpNiVG5dV5unZcH5_Hgav-2rxq9POC_kukPKGx7Cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864079939</pqid></control><display><type>article</type><title>Thin Film Composite Membranes as a New Category of Alkaline Water Electrolysis Membranes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Choi, Juyeon ; Kim, Hansoo ; Jeon, Sungkwon ; Shin, Min Gyu ; Seo, Jin Young ; Park, You-In ; Park, Hosik ; Lee, Albert S ; Lee, Changsoo ; Kim, MinJoong ; Cho, Hyun-Seok ; Lee, Jung-Hyun</creator><creatorcontrib>Choi, Juyeon ; Kim, Hansoo ; Jeon, Sungkwon ; Shin, Min Gyu ; Seo, Jin Young ; Park, You-In ; Park, Hosik ; Lee, Albert S ; Lee, Changsoo ; Kim, MinJoong ; Cho, Hyun-Seok ; Lee, Jung-Hyun</creatorcontrib><description>Alkaline water electrolysis (AWE) is considered a promising technology for green hydrogen (H ) production. Conventional diaphragm-type porous membranes have a high risk of explosion owing to their high gas crossover, while nonporous anion exchange membranes lack mechanical and thermochemical stability, limiting their practical application. Herein, a thin film composite (TFC) membrane is proposed as a new category of AWE membranes. The TFC membrane consists of an ultrathin quaternary ammonium (QA) selective layer formed via Menshutkin reaction-based interfacial polymerization on a porous polyethylene (PE) support. The dense, alkaline-stable, and highly anion-conductive QA layer prevents gas crossover while promoting anion transport. The PE support reinforces the mechanical and thermochemical properties, while its highly porous and thin structure reduces mass transport resistance across the TFC membrane. Consequently, the TFC membrane exhibits unprecedentedly high AWE performance (1.16 A cm at 1.8 V) using nonprecious group metal electrodes with a potassium hydroxide (25 wt%) aqueous solution at 80 °C, significantly outperforming commercial and other lab-made AWE membranes. Moreover, the TFC membrane demonstrates remarkably low gas crossover, long-term stability, and stack cell operability, thereby ensuring its commercial viability for green H production. This strategy provides an advanced material platform for energy and environmental applications.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202300825</identifier><identifier>PMID: 37231553</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anion exchanging ; Aqueous solutions ; Crossovers ; Electrolysis ; Green hydrogen ; Hydrogen production ; Mass transport ; Membranes ; Nanotechnology ; Polyethylenes ; Potassium hydroxides ; Stability ; Thermochemical properties ; Thin films</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (37), p.e2300825-e2300825</ispartof><rights>2023 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-763224fa98855dca524c8c3e68605cf108b46e5b784343185b960f30e5faf2c83</citedby><cites>FETCH-LOGICAL-c323t-763224fa98855dca524c8c3e68605cf108b46e5b784343185b960f30e5faf2c83</cites><orcidid>0000-0002-9662-1703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37231553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Juyeon</creatorcontrib><creatorcontrib>Kim, Hansoo</creatorcontrib><creatorcontrib>Jeon, Sungkwon</creatorcontrib><creatorcontrib>Shin, Min Gyu</creatorcontrib><creatorcontrib>Seo, Jin Young</creatorcontrib><creatorcontrib>Park, You-In</creatorcontrib><creatorcontrib>Park, Hosik</creatorcontrib><creatorcontrib>Lee, Albert S</creatorcontrib><creatorcontrib>Lee, Changsoo</creatorcontrib><creatorcontrib>Kim, MinJoong</creatorcontrib><creatorcontrib>Cho, Hyun-Seok</creatorcontrib><creatorcontrib>Lee, Jung-Hyun</creatorcontrib><title>Thin Film Composite Membranes as a New Category of Alkaline Water Electrolysis Membranes</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Alkaline water electrolysis (AWE) is considered a promising technology for green hydrogen (H ) production. Conventional diaphragm-type porous membranes have a high risk of explosion owing to their high gas crossover, while nonporous anion exchange membranes lack mechanical and thermochemical stability, limiting their practical application. Herein, a thin film composite (TFC) membrane is proposed as a new category of AWE membranes. The TFC membrane consists of an ultrathin quaternary ammonium (QA) selective layer formed via Menshutkin reaction-based interfacial polymerization on a porous polyethylene (PE) support. The dense, alkaline-stable, and highly anion-conductive QA layer prevents gas crossover while promoting anion transport. The PE support reinforces the mechanical and thermochemical properties, while its highly porous and thin structure reduces mass transport resistance across the TFC membrane. Consequently, the TFC membrane exhibits unprecedentedly high AWE performance (1.16 A cm at 1.8 V) using nonprecious group metal electrodes with a potassium hydroxide (25 wt%) aqueous solution at 80 °C, significantly outperforming commercial and other lab-made AWE membranes. Moreover, the TFC membrane demonstrates remarkably low gas crossover, long-term stability, and stack cell operability, thereby ensuring its commercial viability for green H production. This strategy provides an advanced material platform for energy and environmental applications.</description><subject>Anion exchanging</subject><subject>Aqueous solutions</subject><subject>Crossovers</subject><subject>Electrolysis</subject><subject>Green hydrogen</subject><subject>Hydrogen production</subject><subject>Mass transport</subject><subject>Membranes</subject><subject>Nanotechnology</subject><subject>Polyethylenes</subject><subject>Potassium hydroxides</subject><subject>Stability</subject><subject>Thermochemical properties</subject><subject>Thin films</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkM9LwzAUx4Mobk6vHiXgxUtnfjRpehxlU2HqZaK3kmaJdqbNTFpk_70ZmxOEB-_x-LzHlw8AlxiNMULkNjTWjgkiFCFB2BEYYo5pwgXJjw8zRgNwFsIKIYpJmp2CAc0IxYzRIXhbfNQtnNW2gYVr1i7UnYaPuqm8bHWAMhZ80t-wkJ1-d34DnYET-ylt3Wr4GpceTq1WnXd2E-rwd3oOToy0QV_s-wi8zKaL4j6ZP989FJN5oiihXZJxSkhqZC4EY0slGUmVUFRzwRFTBiNRpVyzKhMpTSkWrMo5MhRpZqQhStARuNn9XXv31evQlU0dlLY2hnB9KIkg0VMuMIno9T905XrfxnSR4inK8pzmkRrvKOVdCF6bcu3rRvpNiVG5dV5unZcH5_Hgav-2rxq9POC_kukPKGx7Cg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Choi, Juyeon</creator><creator>Kim, Hansoo</creator><creator>Jeon, Sungkwon</creator><creator>Shin, Min Gyu</creator><creator>Seo, Jin Young</creator><creator>Park, You-In</creator><creator>Park, Hosik</creator><creator>Lee, Albert S</creator><creator>Lee, Changsoo</creator><creator>Kim, MinJoong</creator><creator>Cho, Hyun-Seok</creator><creator>Lee, Jung-Hyun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9662-1703</orcidid></search><sort><creationdate>20230901</creationdate><title>Thin Film Composite Membranes as a New Category of Alkaline Water Electrolysis Membranes</title><author>Choi, Juyeon ; Kim, Hansoo ; Jeon, Sungkwon ; Shin, Min Gyu ; Seo, Jin Young ; Park, You-In ; Park, Hosik ; Lee, Albert S ; Lee, Changsoo ; Kim, MinJoong ; Cho, Hyun-Seok ; Lee, Jung-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-763224fa98855dca524c8c3e68605cf108b46e5b784343185b960f30e5faf2c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anion exchanging</topic><topic>Aqueous solutions</topic><topic>Crossovers</topic><topic>Electrolysis</topic><topic>Green hydrogen</topic><topic>Hydrogen production</topic><topic>Mass transport</topic><topic>Membranes</topic><topic>Nanotechnology</topic><topic>Polyethylenes</topic><topic>Potassium hydroxides</topic><topic>Stability</topic><topic>Thermochemical properties</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Juyeon</creatorcontrib><creatorcontrib>Kim, Hansoo</creatorcontrib><creatorcontrib>Jeon, Sungkwon</creatorcontrib><creatorcontrib>Shin, Min Gyu</creatorcontrib><creatorcontrib>Seo, Jin Young</creatorcontrib><creatorcontrib>Park, You-In</creatorcontrib><creatorcontrib>Park, Hosik</creatorcontrib><creatorcontrib>Lee, Albert S</creatorcontrib><creatorcontrib>Lee, Changsoo</creatorcontrib><creatorcontrib>Kim, MinJoong</creatorcontrib><creatorcontrib>Cho, Hyun-Seok</creatorcontrib><creatorcontrib>Lee, Jung-Hyun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Juyeon</au><au>Kim, Hansoo</au><au>Jeon, Sungkwon</au><au>Shin, Min Gyu</au><au>Seo, Jin Young</au><au>Park, You-In</au><au>Park, Hosik</au><au>Lee, Albert S</au><au>Lee, Changsoo</au><au>Kim, MinJoong</au><au>Cho, Hyun-Seok</au><au>Lee, Jung-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin Film Composite Membranes as a New Category of Alkaline Water Electrolysis Membranes</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>19</volume><issue>37</issue><spage>e2300825</spage><epage>e2300825</epage><pages>e2300825-e2300825</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Alkaline water electrolysis (AWE) is considered a promising technology for green hydrogen (H ) production. Conventional diaphragm-type porous membranes have a high risk of explosion owing to their high gas crossover, while nonporous anion exchange membranes lack mechanical and thermochemical stability, limiting their practical application. Herein, a thin film composite (TFC) membrane is proposed as a new category of AWE membranes. The TFC membrane consists of an ultrathin quaternary ammonium (QA) selective layer formed via Menshutkin reaction-based interfacial polymerization on a porous polyethylene (PE) support. The dense, alkaline-stable, and highly anion-conductive QA layer prevents gas crossover while promoting anion transport. The PE support reinforces the mechanical and thermochemical properties, while its highly porous and thin structure reduces mass transport resistance across the TFC membrane. Consequently, the TFC membrane exhibits unprecedentedly high AWE performance (1.16 A cm at 1.8 V) using nonprecious group metal electrodes with a potassium hydroxide (25 wt%) aqueous solution at 80 °C, significantly outperforming commercial and other lab-made AWE membranes. Moreover, the TFC membrane demonstrates remarkably low gas crossover, long-term stability, and stack cell operability, thereby ensuring its commercial viability for green H production. This strategy provides an advanced material platform for energy and environmental applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37231553</pmid><doi>10.1002/smll.202300825</doi><orcidid>https://orcid.org/0000-0002-9662-1703</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (37), p.e2300825-e2300825
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2820029812
source Wiley Online Library Journals Frontfile Complete
subjects Anion exchanging
Aqueous solutions
Crossovers
Electrolysis
Green hydrogen
Hydrogen production
Mass transport
Membranes
Nanotechnology
Polyethylenes
Potassium hydroxides
Stability
Thermochemical properties
Thin films
title Thin Film Composite Membranes as a New Category of Alkaline Water Electrolysis Membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin%20Film%20Composite%20Membranes%20as%20a%20New%20Category%20of%20Alkaline%20Water%20Electrolysis%20Membranes&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Choi,%20Juyeon&rft.date=2023-09-01&rft.volume=19&rft.issue=37&rft.spage=e2300825&rft.epage=e2300825&rft.pages=e2300825-e2300825&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202300825&rft_dat=%3Cproquest_cross%3E2820029812%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864079939&rft_id=info:pmid/37231553&rfr_iscdi=true