Thin Film Composite Membranes as a New Category of Alkaline Water Electrolysis Membranes
Alkaline water electrolysis (AWE) is considered a promising technology for green hydrogen (H ) production. Conventional diaphragm-type porous membranes have a high risk of explosion owing to their high gas crossover, while nonporous anion exchange membranes lack mechanical and thermochemical stabili...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-09, Vol.19 (37), p.e2300825-e2300825 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2300825 |
---|---|
container_issue | 37 |
container_start_page | e2300825 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Choi, Juyeon Kim, Hansoo Jeon, Sungkwon Shin, Min Gyu Seo, Jin Young Park, You-In Park, Hosik Lee, Albert S Lee, Changsoo Kim, MinJoong Cho, Hyun-Seok Lee, Jung-Hyun |
description | Alkaline water electrolysis (AWE) is considered a promising technology for green hydrogen (H
) production. Conventional diaphragm-type porous membranes have a high risk of explosion owing to their high gas crossover, while nonporous anion exchange membranes lack mechanical and thermochemical stability, limiting their practical application. Herein, a thin film composite (TFC) membrane is proposed as a new category of AWE membranes. The TFC membrane consists of an ultrathin quaternary ammonium (QA) selective layer formed via Menshutkin reaction-based interfacial polymerization on a porous polyethylene (PE) support. The dense, alkaline-stable, and highly anion-conductive QA layer prevents gas crossover while promoting anion transport. The PE support reinforces the mechanical and thermochemical properties, while its highly porous and thin structure reduces mass transport resistance across the TFC membrane. Consequently, the TFC membrane exhibits unprecedentedly high AWE performance (1.16 A cm
at 1.8 V) using nonprecious group metal electrodes with a potassium hydroxide (25 wt%) aqueous solution at 80 °C, significantly outperforming commercial and other lab-made AWE membranes. Moreover, the TFC membrane demonstrates remarkably low gas crossover, long-term stability, and stack cell operability, thereby ensuring its commercial viability for green H
production. This strategy provides an advanced material platform for energy and environmental applications. |
doi_str_mv | 10.1002/smll.202300825 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2820029812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820029812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-763224fa98855dca524c8c3e68605cf108b46e5b784343185b960f30e5faf2c83</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4Mobk6vHiXgxUtnfjRpehxlU2HqZaK3kmaJdqbNTFpk_70ZmxOEB-_x-LzHlw8AlxiNMULkNjTWjgkiFCFB2BEYYo5pwgXJjw8zRgNwFsIKIYpJmp2CAc0IxYzRIXhbfNQtnNW2gYVr1i7UnYaPuqm8bHWAMhZ80t-wkJ1-d34DnYET-ylt3Wr4GpceTq1WnXd2E-rwd3oOToy0QV_s-wi8zKaL4j6ZP989FJN5oiihXZJxSkhqZC4EY0slGUmVUFRzwRFTBiNRpVyzKhMpTSkWrMo5MhRpZqQhStARuNn9XXv31evQlU0dlLY2hnB9KIkg0VMuMIno9T905XrfxnSR4inK8pzmkRrvKOVdCF6bcu3rRvpNiVG5dV5unZcH5_Hgav-2rxq9POC_kukPKGx7Cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864079939</pqid></control><display><type>article</type><title>Thin Film Composite Membranes as a New Category of Alkaline Water Electrolysis Membranes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Choi, Juyeon ; Kim, Hansoo ; Jeon, Sungkwon ; Shin, Min Gyu ; Seo, Jin Young ; Park, You-In ; Park, Hosik ; Lee, Albert S ; Lee, Changsoo ; Kim, MinJoong ; Cho, Hyun-Seok ; Lee, Jung-Hyun</creator><creatorcontrib>Choi, Juyeon ; Kim, Hansoo ; Jeon, Sungkwon ; Shin, Min Gyu ; Seo, Jin Young ; Park, You-In ; Park, Hosik ; Lee, Albert S ; Lee, Changsoo ; Kim, MinJoong ; Cho, Hyun-Seok ; Lee, Jung-Hyun</creatorcontrib><description>Alkaline water electrolysis (AWE) is considered a promising technology for green hydrogen (H
) production. Conventional diaphragm-type porous membranes have a high risk of explosion owing to their high gas crossover, while nonporous anion exchange membranes lack mechanical and thermochemical stability, limiting their practical application. Herein, a thin film composite (TFC) membrane is proposed as a new category of AWE membranes. The TFC membrane consists of an ultrathin quaternary ammonium (QA) selective layer formed via Menshutkin reaction-based interfacial polymerization on a porous polyethylene (PE) support. The dense, alkaline-stable, and highly anion-conductive QA layer prevents gas crossover while promoting anion transport. The PE support reinforces the mechanical and thermochemical properties, while its highly porous and thin structure reduces mass transport resistance across the TFC membrane. Consequently, the TFC membrane exhibits unprecedentedly high AWE performance (1.16 A cm
at 1.8 V) using nonprecious group metal electrodes with a potassium hydroxide (25 wt%) aqueous solution at 80 °C, significantly outperforming commercial and other lab-made AWE membranes. Moreover, the TFC membrane demonstrates remarkably low gas crossover, long-term stability, and stack cell operability, thereby ensuring its commercial viability for green H
production. This strategy provides an advanced material platform for energy and environmental applications.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202300825</identifier><identifier>PMID: 37231553</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anion exchanging ; Aqueous solutions ; Crossovers ; Electrolysis ; Green hydrogen ; Hydrogen production ; Mass transport ; Membranes ; Nanotechnology ; Polyethylenes ; Potassium hydroxides ; Stability ; Thermochemical properties ; Thin films</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (37), p.e2300825-e2300825</ispartof><rights>2023 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-763224fa98855dca524c8c3e68605cf108b46e5b784343185b960f30e5faf2c83</citedby><cites>FETCH-LOGICAL-c323t-763224fa98855dca524c8c3e68605cf108b46e5b784343185b960f30e5faf2c83</cites><orcidid>0000-0002-9662-1703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37231553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Juyeon</creatorcontrib><creatorcontrib>Kim, Hansoo</creatorcontrib><creatorcontrib>Jeon, Sungkwon</creatorcontrib><creatorcontrib>Shin, Min Gyu</creatorcontrib><creatorcontrib>Seo, Jin Young</creatorcontrib><creatorcontrib>Park, You-In</creatorcontrib><creatorcontrib>Park, Hosik</creatorcontrib><creatorcontrib>Lee, Albert S</creatorcontrib><creatorcontrib>Lee, Changsoo</creatorcontrib><creatorcontrib>Kim, MinJoong</creatorcontrib><creatorcontrib>Cho, Hyun-Seok</creatorcontrib><creatorcontrib>Lee, Jung-Hyun</creatorcontrib><title>Thin Film Composite Membranes as a New Category of Alkaline Water Electrolysis Membranes</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Alkaline water electrolysis (AWE) is considered a promising technology for green hydrogen (H
) production. Conventional diaphragm-type porous membranes have a high risk of explosion owing to their high gas crossover, while nonporous anion exchange membranes lack mechanical and thermochemical stability, limiting their practical application. Herein, a thin film composite (TFC) membrane is proposed as a new category of AWE membranes. The TFC membrane consists of an ultrathin quaternary ammonium (QA) selective layer formed via Menshutkin reaction-based interfacial polymerization on a porous polyethylene (PE) support. The dense, alkaline-stable, and highly anion-conductive QA layer prevents gas crossover while promoting anion transport. The PE support reinforces the mechanical and thermochemical properties, while its highly porous and thin structure reduces mass transport resistance across the TFC membrane. Consequently, the TFC membrane exhibits unprecedentedly high AWE performance (1.16 A cm
at 1.8 V) using nonprecious group metal electrodes with a potassium hydroxide (25 wt%) aqueous solution at 80 °C, significantly outperforming commercial and other lab-made AWE membranes. Moreover, the TFC membrane demonstrates remarkably low gas crossover, long-term stability, and stack cell operability, thereby ensuring its commercial viability for green H
production. This strategy provides an advanced material platform for energy and environmental applications.</description><subject>Anion exchanging</subject><subject>Aqueous solutions</subject><subject>Crossovers</subject><subject>Electrolysis</subject><subject>Green hydrogen</subject><subject>Hydrogen production</subject><subject>Mass transport</subject><subject>Membranes</subject><subject>Nanotechnology</subject><subject>Polyethylenes</subject><subject>Potassium hydroxides</subject><subject>Stability</subject><subject>Thermochemical properties</subject><subject>Thin films</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkM9LwzAUx4Mobk6vHiXgxUtnfjRpehxlU2HqZaK3kmaJdqbNTFpk_70ZmxOEB-_x-LzHlw8AlxiNMULkNjTWjgkiFCFB2BEYYo5pwgXJjw8zRgNwFsIKIYpJmp2CAc0IxYzRIXhbfNQtnNW2gYVr1i7UnYaPuqm8bHWAMhZ80t-wkJ1-d34DnYET-ylt3Wr4GpceTq1WnXd2E-rwd3oOToy0QV_s-wi8zKaL4j6ZP989FJN5oiihXZJxSkhqZC4EY0slGUmVUFRzwRFTBiNRpVyzKhMpTSkWrMo5MhRpZqQhStARuNn9XXv31evQlU0dlLY2hnB9KIkg0VMuMIno9T905XrfxnSR4inK8pzmkRrvKOVdCF6bcu3rRvpNiVG5dV5unZcH5_Hgav-2rxq9POC_kukPKGx7Cg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Choi, Juyeon</creator><creator>Kim, Hansoo</creator><creator>Jeon, Sungkwon</creator><creator>Shin, Min Gyu</creator><creator>Seo, Jin Young</creator><creator>Park, You-In</creator><creator>Park, Hosik</creator><creator>Lee, Albert S</creator><creator>Lee, Changsoo</creator><creator>Kim, MinJoong</creator><creator>Cho, Hyun-Seok</creator><creator>Lee, Jung-Hyun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9662-1703</orcidid></search><sort><creationdate>20230901</creationdate><title>Thin Film Composite Membranes as a New Category of Alkaline Water Electrolysis Membranes</title><author>Choi, Juyeon ; Kim, Hansoo ; Jeon, Sungkwon ; Shin, Min Gyu ; Seo, Jin Young ; Park, You-In ; Park, Hosik ; Lee, Albert S ; Lee, Changsoo ; Kim, MinJoong ; Cho, Hyun-Seok ; Lee, Jung-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-763224fa98855dca524c8c3e68605cf108b46e5b784343185b960f30e5faf2c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anion exchanging</topic><topic>Aqueous solutions</topic><topic>Crossovers</topic><topic>Electrolysis</topic><topic>Green hydrogen</topic><topic>Hydrogen production</topic><topic>Mass transport</topic><topic>Membranes</topic><topic>Nanotechnology</topic><topic>Polyethylenes</topic><topic>Potassium hydroxides</topic><topic>Stability</topic><topic>Thermochemical properties</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Juyeon</creatorcontrib><creatorcontrib>Kim, Hansoo</creatorcontrib><creatorcontrib>Jeon, Sungkwon</creatorcontrib><creatorcontrib>Shin, Min Gyu</creatorcontrib><creatorcontrib>Seo, Jin Young</creatorcontrib><creatorcontrib>Park, You-In</creatorcontrib><creatorcontrib>Park, Hosik</creatorcontrib><creatorcontrib>Lee, Albert S</creatorcontrib><creatorcontrib>Lee, Changsoo</creatorcontrib><creatorcontrib>Kim, MinJoong</creatorcontrib><creatorcontrib>Cho, Hyun-Seok</creatorcontrib><creatorcontrib>Lee, Jung-Hyun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Juyeon</au><au>Kim, Hansoo</au><au>Jeon, Sungkwon</au><au>Shin, Min Gyu</au><au>Seo, Jin Young</au><au>Park, You-In</au><au>Park, Hosik</au><au>Lee, Albert S</au><au>Lee, Changsoo</au><au>Kim, MinJoong</au><au>Cho, Hyun-Seok</au><au>Lee, Jung-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin Film Composite Membranes as a New Category of Alkaline Water Electrolysis Membranes</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>19</volume><issue>37</issue><spage>e2300825</spage><epage>e2300825</epage><pages>e2300825-e2300825</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Alkaline water electrolysis (AWE) is considered a promising technology for green hydrogen (H
) production. Conventional diaphragm-type porous membranes have a high risk of explosion owing to their high gas crossover, while nonporous anion exchange membranes lack mechanical and thermochemical stability, limiting their practical application. Herein, a thin film composite (TFC) membrane is proposed as a new category of AWE membranes. The TFC membrane consists of an ultrathin quaternary ammonium (QA) selective layer formed via Menshutkin reaction-based interfacial polymerization on a porous polyethylene (PE) support. The dense, alkaline-stable, and highly anion-conductive QA layer prevents gas crossover while promoting anion transport. The PE support reinforces the mechanical and thermochemical properties, while its highly porous and thin structure reduces mass transport resistance across the TFC membrane. Consequently, the TFC membrane exhibits unprecedentedly high AWE performance (1.16 A cm
at 1.8 V) using nonprecious group metal electrodes with a potassium hydroxide (25 wt%) aqueous solution at 80 °C, significantly outperforming commercial and other lab-made AWE membranes. Moreover, the TFC membrane demonstrates remarkably low gas crossover, long-term stability, and stack cell operability, thereby ensuring its commercial viability for green H
production. This strategy provides an advanced material platform for energy and environmental applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37231553</pmid><doi>10.1002/smll.202300825</doi><orcidid>https://orcid.org/0000-0002-9662-1703</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (37), p.e2300825-e2300825 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2820029812 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anion exchanging Aqueous solutions Crossovers Electrolysis Green hydrogen Hydrogen production Mass transport Membranes Nanotechnology Polyethylenes Potassium hydroxides Stability Thermochemical properties Thin films |
title | Thin Film Composite Membranes as a New Category of Alkaline Water Electrolysis Membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin%20Film%20Composite%20Membranes%20as%20a%20New%20Category%20of%20Alkaline%20Water%20Electrolysis%20Membranes&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Choi,%20Juyeon&rft.date=2023-09-01&rft.volume=19&rft.issue=37&rft.spage=e2300825&rft.epage=e2300825&rft.pages=e2300825-e2300825&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202300825&rft_dat=%3Cproquest_cross%3E2820029812%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864079939&rft_id=info:pmid/37231553&rfr_iscdi=true |