Operational Ontology for Oncology (O3): A Professional Society-Based, Multistakeholder, Consensus-Driven Informatics Standard Supporting Clinical and Research Use of Real-World Data From Patients Treated for Cancer

The ongoing lack of data standardization severely undermines the potential for automated learning from the vast amount of information routinely archived in electronic health records (EHRs), radiation oncology information systems, treatment planning systems, and other cancer care and outcomes databas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of radiation oncology, biology, physics biology, physics, 2023-11, Vol.117 (3), p.533-550
Hauptverfasser: Mayo, Charles S, Feng, Mary U, Brock, Kristy K, Kudner, Randi, Balter, Peter, Buchsbaum, Jeffrey C, Caissie, Amanda, Covington, Elizabeth, Daugherty, Emily C, Dekker, Andre L, Fuller, Clifton D, Hallstrom, Anneka L, Hong, David S, Hong, Julian C, Kamran, Sophia C, Katsoulakis, Eva, Kildea, John, Krauze, Andra V, Kruse, Jon J, McNutt, Tod, Mierzwa, Michelle, Moreno, Amy, Palta, Jatinder R, Popple, Richard, Purdie, Thomas G, Richardson, Susan, Sharp, Gregory C, Satomi, Shiraishi, Tarbox, Lawrence R, Venkatesan, Aradhana M, Witztum, Alon, Woods, Kelly E, Yao, Yuan, Farahani, Keyvan, Aneja, Sanjay, Gabriel, Peter E, Hadjiiski, Lubomire, Ruan, Dan, Siewerdsen, Jeffrey H, Bratt, Steven, Casagni, Michelle, Chen, Su, Christodouleas, John C, DiDonato, Anthony, Hayman, James, Kapoor, Rishhab, Kravitz, Saul, Sebastian, Sharon, Von Siebenthal, Martin, Bosch, Walter, Hurkmans, Coen, Yom, Sue S, Xiao, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 550
container_issue 3
container_start_page 533
container_title International journal of radiation oncology, biology, physics
container_volume 117
creator Mayo, Charles S
Feng, Mary U
Brock, Kristy K
Kudner, Randi
Balter, Peter
Buchsbaum, Jeffrey C
Caissie, Amanda
Covington, Elizabeth
Daugherty, Emily C
Dekker, Andre L
Fuller, Clifton D
Hallstrom, Anneka L
Hong, David S
Hong, Julian C
Kamran, Sophia C
Katsoulakis, Eva
Kildea, John
Krauze, Andra V
Kruse, Jon J
McNutt, Tod
Mierzwa, Michelle
Moreno, Amy
Palta, Jatinder R
Popple, Richard
Purdie, Thomas G
Richardson, Susan
Sharp, Gregory C
Satomi, Shiraishi
Tarbox, Lawrence R
Venkatesan, Aradhana M
Witztum, Alon
Woods, Kelly E
Yao, Yuan
Farahani, Keyvan
Aneja, Sanjay
Gabriel, Peter E
Hadjiiski, Lubomire
Ruan, Dan
Siewerdsen, Jeffrey H
Bratt, Steven
Casagni, Michelle
Chen, Su
Christodouleas, John C
DiDonato, Anthony
Hayman, James
Kapoor, Rishhab
Kravitz, Saul
Sebastian, Sharon
Von Siebenthal, Martin
Bosch, Walter
Hurkmans, Coen
Yom, Sue S
Xiao, Ying
description The ongoing lack of data standardization severely undermines the potential for automated learning from the vast amount of information routinely archived in electronic health records (EHRs), radiation oncology information systems, treatment planning systems, and other cancer care and outcomes databases. We sought to create a standardized ontology for clinical data, social determinants of health, and other radiation oncology concepts and interrelationships. The American Association of Physicists in Medicine's Big Data Science Committee was initiated in July 2019 to explore common ground from the stakeholders' collective experience of issues that typically compromise the formation of large inter- and intra-institutional databases from EHRs. The Big Data Science Committee adopted an iterative, cyclical approach to engaging stakeholders beyond its membership to optimize the integration of diverse perspectives from the community. We developed the Operational Ontology for Oncology (O3), which identified 42 key elements, 359 attributes, 144 value sets, and 155 relationships ranked in relative importance of clinical significance, likelihood of availability in EHRs, and the ability to modify routine clinical processes to permit aggregation. Recommendations are provided for best use and development of the O3 to 4 constituencies: device manufacturers, centers of clinical care, researchers, and professional societies. O3 is designed to extend and interoperate with existing global infrastructure and data science standards. The implementation of these recommendations will lower the barriers for aggregation of information that could be used to create large, representative, findable, accessible, interoperable, and reusable data sets to support the scientific objectives of grant programs. The construction of comprehensive "real-world" data sets and application of advanced analytical techniques, including artificial intelligence, holds the potential to revolutionize patient management and improve outcomes by leveraging increased access to information derived from larger, more representative data sets.
doi_str_mv 10.1016/j.ijrobp.2023.05.033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2820029735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820029735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-d2791ccd6feea5e6a2d72048fe2a9c38215c7fcf873c5696e18188b2f915dff03</originalsourceid><addsrcrecordid>eNo9kc1uFDEQhC0EIkvgDRDyMUiZwT_zyy1MCEQK2ohNBDfLa7eTWTz2YHuQ9kV5Hhw2cGqVuqq6pQ-h15SUlNDm3a4cd8Fv55IRxktSl4TzJ2hFu7YveF1_f4pWhDek4Nl8hF7EuCOEUNpWz9ERb1lVNaxbod_rGYJMo3fS4rVL3vq7PTY-ZKEO4mTN377HZ_g6eAMxHqwbr0ZI--KDjKBP8ZfFpjEm-QPuvdUQTvHgXQQXl1ich_EXOHzpcuuUT6mIN0k6LYPGm2WefUiju8ODHd2ocnVe4a8QQQZ1j28jYG-ylrb45oPV-FwmiS-Cn_B1LgOXIr4JIBPov28P0ikIL9EzI22EV4_zGN1efLwZPhdX60-Xw9lVoThpU6FZ21OldGMAZA2NZLplpOoMMNkr3jFaq9Yo07Vc1U3fAO1o122Z6WmtjSH8GJ0ceufgfy4Qk5jGqMBa6cAvUbCOEcL6ltfZWh2sKvgYAxgxh3GSYS8oEQ9ExU4ciIoHooLUIhPNsTePF5btBPp_6B9C_gcJjKLv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820029735</pqid></control><display><type>article</type><title>Operational Ontology for Oncology (O3): A Professional Society-Based, Multistakeholder, Consensus-Driven Informatics Standard Supporting Clinical and Research Use of Real-World Data From Patients Treated for Cancer</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Mayo, Charles S ; Feng, Mary U ; Brock, Kristy K ; Kudner, Randi ; Balter, Peter ; Buchsbaum, Jeffrey C ; Caissie, Amanda ; Covington, Elizabeth ; Daugherty, Emily C ; Dekker, Andre L ; Fuller, Clifton D ; Hallstrom, Anneka L ; Hong, David S ; Hong, Julian C ; Kamran, Sophia C ; Katsoulakis, Eva ; Kildea, John ; Krauze, Andra V ; Kruse, Jon J ; McNutt, Tod ; Mierzwa, Michelle ; Moreno, Amy ; Palta, Jatinder R ; Popple, Richard ; Purdie, Thomas G ; Richardson, Susan ; Sharp, Gregory C ; Satomi, Shiraishi ; Tarbox, Lawrence R ; Venkatesan, Aradhana M ; Witztum, Alon ; Woods, Kelly E ; Yao, Yuan ; Farahani, Keyvan ; Aneja, Sanjay ; Gabriel, Peter E ; Hadjiiski, Lubomire ; Ruan, Dan ; Siewerdsen, Jeffrey H ; Bratt, Steven ; Casagni, Michelle ; Chen, Su ; Christodouleas, John C ; DiDonato, Anthony ; Hayman, James ; Kapoor, Rishhab ; Kravitz, Saul ; Sebastian, Sharon ; Von Siebenthal, Martin ; Bosch, Walter ; Hurkmans, Coen ; Yom, Sue S ; Xiao, Ying</creator><creatorcontrib>Mayo, Charles S ; Feng, Mary U ; Brock, Kristy K ; Kudner, Randi ; Balter, Peter ; Buchsbaum, Jeffrey C ; Caissie, Amanda ; Covington, Elizabeth ; Daugherty, Emily C ; Dekker, Andre L ; Fuller, Clifton D ; Hallstrom, Anneka L ; Hong, David S ; Hong, Julian C ; Kamran, Sophia C ; Katsoulakis, Eva ; Kildea, John ; Krauze, Andra V ; Kruse, Jon J ; McNutt, Tod ; Mierzwa, Michelle ; Moreno, Amy ; Palta, Jatinder R ; Popple, Richard ; Purdie, Thomas G ; Richardson, Susan ; Sharp, Gregory C ; Satomi, Shiraishi ; Tarbox, Lawrence R ; Venkatesan, Aradhana M ; Witztum, Alon ; Woods, Kelly E ; Yao, Yuan ; Farahani, Keyvan ; Aneja, Sanjay ; Gabriel, Peter E ; Hadjiiski, Lubomire ; Ruan, Dan ; Siewerdsen, Jeffrey H ; Bratt, Steven ; Casagni, Michelle ; Chen, Su ; Christodouleas, John C ; DiDonato, Anthony ; Hayman, James ; Kapoor, Rishhab ; Kravitz, Saul ; Sebastian, Sharon ; Von Siebenthal, Martin ; Bosch, Walter ; Hurkmans, Coen ; Yom, Sue S ; Xiao, Ying</creatorcontrib><description>The ongoing lack of data standardization severely undermines the potential for automated learning from the vast amount of information routinely archived in electronic health records (EHRs), radiation oncology information systems, treatment planning systems, and other cancer care and outcomes databases. We sought to create a standardized ontology for clinical data, social determinants of health, and other radiation oncology concepts and interrelationships. The American Association of Physicists in Medicine's Big Data Science Committee was initiated in July 2019 to explore common ground from the stakeholders' collective experience of issues that typically compromise the formation of large inter- and intra-institutional databases from EHRs. The Big Data Science Committee adopted an iterative, cyclical approach to engaging stakeholders beyond its membership to optimize the integration of diverse perspectives from the community. We developed the Operational Ontology for Oncology (O3), which identified 42 key elements, 359 attributes, 144 value sets, and 155 relationships ranked in relative importance of clinical significance, likelihood of availability in EHRs, and the ability to modify routine clinical processes to permit aggregation. Recommendations are provided for best use and development of the O3 to 4 constituencies: device manufacturers, centers of clinical care, researchers, and professional societies. O3 is designed to extend and interoperate with existing global infrastructure and data science standards. The implementation of these recommendations will lower the barriers for aggregation of information that could be used to create large, representative, findable, accessible, interoperable, and reusable data sets to support the scientific objectives of grant programs. The construction of comprehensive "real-world" data sets and application of advanced analytical techniques, including artificial intelligence, holds the potential to revolutionize patient management and improve outcomes by leveraging increased access to information derived from larger, more representative data sets.</description><identifier>ISSN: 0360-3016</identifier><identifier>ISSN: 1879-355X</identifier><identifier>EISSN: 1879-355X</identifier><identifier>DOI: 10.1016/j.ijrobp.2023.05.033</identifier><identifier>PMID: 37244628</identifier><language>eng</language><publisher>United States</publisher><subject>Artificial Intelligence ; Consensus ; Humans ; Informatics ; Neoplasms - radiotherapy ; Radiation Oncology</subject><ispartof>International journal of radiation oncology, biology, physics, 2023-11, Vol.117 (3), p.533-550</ispartof><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-d2791ccd6feea5e6a2d72048fe2a9c38215c7fcf873c5696e18188b2f915dff03</citedby><cites>FETCH-LOGICAL-c307t-d2791ccd6feea5e6a2d72048fe2a9c38215c7fcf873c5696e18188b2f915dff03</cites><orcidid>0000-0003-2030-9892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37244628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mayo, Charles S</creatorcontrib><creatorcontrib>Feng, Mary U</creatorcontrib><creatorcontrib>Brock, Kristy K</creatorcontrib><creatorcontrib>Kudner, Randi</creatorcontrib><creatorcontrib>Balter, Peter</creatorcontrib><creatorcontrib>Buchsbaum, Jeffrey C</creatorcontrib><creatorcontrib>Caissie, Amanda</creatorcontrib><creatorcontrib>Covington, Elizabeth</creatorcontrib><creatorcontrib>Daugherty, Emily C</creatorcontrib><creatorcontrib>Dekker, Andre L</creatorcontrib><creatorcontrib>Fuller, Clifton D</creatorcontrib><creatorcontrib>Hallstrom, Anneka L</creatorcontrib><creatorcontrib>Hong, David S</creatorcontrib><creatorcontrib>Hong, Julian C</creatorcontrib><creatorcontrib>Kamran, Sophia C</creatorcontrib><creatorcontrib>Katsoulakis, Eva</creatorcontrib><creatorcontrib>Kildea, John</creatorcontrib><creatorcontrib>Krauze, Andra V</creatorcontrib><creatorcontrib>Kruse, Jon J</creatorcontrib><creatorcontrib>McNutt, Tod</creatorcontrib><creatorcontrib>Mierzwa, Michelle</creatorcontrib><creatorcontrib>Moreno, Amy</creatorcontrib><creatorcontrib>Palta, Jatinder R</creatorcontrib><creatorcontrib>Popple, Richard</creatorcontrib><creatorcontrib>Purdie, Thomas G</creatorcontrib><creatorcontrib>Richardson, Susan</creatorcontrib><creatorcontrib>Sharp, Gregory C</creatorcontrib><creatorcontrib>Satomi, Shiraishi</creatorcontrib><creatorcontrib>Tarbox, Lawrence R</creatorcontrib><creatorcontrib>Venkatesan, Aradhana M</creatorcontrib><creatorcontrib>Witztum, Alon</creatorcontrib><creatorcontrib>Woods, Kelly E</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Farahani, Keyvan</creatorcontrib><creatorcontrib>Aneja, Sanjay</creatorcontrib><creatorcontrib>Gabriel, Peter E</creatorcontrib><creatorcontrib>Hadjiiski, Lubomire</creatorcontrib><creatorcontrib>Ruan, Dan</creatorcontrib><creatorcontrib>Siewerdsen, Jeffrey H</creatorcontrib><creatorcontrib>Bratt, Steven</creatorcontrib><creatorcontrib>Casagni, Michelle</creatorcontrib><creatorcontrib>Chen, Su</creatorcontrib><creatorcontrib>Christodouleas, John C</creatorcontrib><creatorcontrib>DiDonato, Anthony</creatorcontrib><creatorcontrib>Hayman, James</creatorcontrib><creatorcontrib>Kapoor, Rishhab</creatorcontrib><creatorcontrib>Kravitz, Saul</creatorcontrib><creatorcontrib>Sebastian, Sharon</creatorcontrib><creatorcontrib>Von Siebenthal, Martin</creatorcontrib><creatorcontrib>Bosch, Walter</creatorcontrib><creatorcontrib>Hurkmans, Coen</creatorcontrib><creatorcontrib>Yom, Sue S</creatorcontrib><creatorcontrib>Xiao, Ying</creatorcontrib><title>Operational Ontology for Oncology (O3): A Professional Society-Based, Multistakeholder, Consensus-Driven Informatics Standard Supporting Clinical and Research Use of Real-World Data From Patients Treated for Cancer</title><title>International journal of radiation oncology, biology, physics</title><addtitle>Int J Radiat Oncol Biol Phys</addtitle><description>The ongoing lack of data standardization severely undermines the potential for automated learning from the vast amount of information routinely archived in electronic health records (EHRs), radiation oncology information systems, treatment planning systems, and other cancer care and outcomes databases. We sought to create a standardized ontology for clinical data, social determinants of health, and other radiation oncology concepts and interrelationships. The American Association of Physicists in Medicine's Big Data Science Committee was initiated in July 2019 to explore common ground from the stakeholders' collective experience of issues that typically compromise the formation of large inter- and intra-institutional databases from EHRs. The Big Data Science Committee adopted an iterative, cyclical approach to engaging stakeholders beyond its membership to optimize the integration of diverse perspectives from the community. We developed the Operational Ontology for Oncology (O3), which identified 42 key elements, 359 attributes, 144 value sets, and 155 relationships ranked in relative importance of clinical significance, likelihood of availability in EHRs, and the ability to modify routine clinical processes to permit aggregation. Recommendations are provided for best use and development of the O3 to 4 constituencies: device manufacturers, centers of clinical care, researchers, and professional societies. O3 is designed to extend and interoperate with existing global infrastructure and data science standards. The implementation of these recommendations will lower the barriers for aggregation of information that could be used to create large, representative, findable, accessible, interoperable, and reusable data sets to support the scientific objectives of grant programs. The construction of comprehensive "real-world" data sets and application of advanced analytical techniques, including artificial intelligence, holds the potential to revolutionize patient management and improve outcomes by leveraging increased access to information derived from larger, more representative data sets.</description><subject>Artificial Intelligence</subject><subject>Consensus</subject><subject>Humans</subject><subject>Informatics</subject><subject>Neoplasms - radiotherapy</subject><subject>Radiation Oncology</subject><issn>0360-3016</issn><issn>1879-355X</issn><issn>1879-355X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kc1uFDEQhC0EIkvgDRDyMUiZwT_zyy1MCEQK2ohNBDfLa7eTWTz2YHuQ9kV5Hhw2cGqVuqq6pQ-h15SUlNDm3a4cd8Fv55IRxktSl4TzJ2hFu7YveF1_f4pWhDek4Nl8hF7EuCOEUNpWz9ERb1lVNaxbod_rGYJMo3fS4rVL3vq7PTY-ZKEO4mTN377HZ_g6eAMxHqwbr0ZI--KDjKBP8ZfFpjEm-QPuvdUQTvHgXQQXl1ich_EXOHzpcuuUT6mIN0k6LYPGm2WefUiju8ODHd2ocnVe4a8QQQZ1j28jYG-ylrb45oPV-FwmiS-Cn_B1LgOXIr4JIBPov28P0ikIL9EzI22EV4_zGN1efLwZPhdX60-Xw9lVoThpU6FZ21OldGMAZA2NZLplpOoMMNkr3jFaq9Yo07Vc1U3fAO1o122Z6WmtjSH8GJ0ceufgfy4Qk5jGqMBa6cAvUbCOEcL6ltfZWh2sKvgYAxgxh3GSYS8oEQ9ExU4ciIoHooLUIhPNsTePF5btBPp_6B9C_gcJjKLv</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Mayo, Charles S</creator><creator>Feng, Mary U</creator><creator>Brock, Kristy K</creator><creator>Kudner, Randi</creator><creator>Balter, Peter</creator><creator>Buchsbaum, Jeffrey C</creator><creator>Caissie, Amanda</creator><creator>Covington, Elizabeth</creator><creator>Daugherty, Emily C</creator><creator>Dekker, Andre L</creator><creator>Fuller, Clifton D</creator><creator>Hallstrom, Anneka L</creator><creator>Hong, David S</creator><creator>Hong, Julian C</creator><creator>Kamran, Sophia C</creator><creator>Katsoulakis, Eva</creator><creator>Kildea, John</creator><creator>Krauze, Andra V</creator><creator>Kruse, Jon J</creator><creator>McNutt, Tod</creator><creator>Mierzwa, Michelle</creator><creator>Moreno, Amy</creator><creator>Palta, Jatinder R</creator><creator>Popple, Richard</creator><creator>Purdie, Thomas G</creator><creator>Richardson, Susan</creator><creator>Sharp, Gregory C</creator><creator>Satomi, Shiraishi</creator><creator>Tarbox, Lawrence R</creator><creator>Venkatesan, Aradhana M</creator><creator>Witztum, Alon</creator><creator>Woods, Kelly E</creator><creator>Yao, Yuan</creator><creator>Farahani, Keyvan</creator><creator>Aneja, Sanjay</creator><creator>Gabriel, Peter E</creator><creator>Hadjiiski, Lubomire</creator><creator>Ruan, Dan</creator><creator>Siewerdsen, Jeffrey H</creator><creator>Bratt, Steven</creator><creator>Casagni, Michelle</creator><creator>Chen, Su</creator><creator>Christodouleas, John C</creator><creator>DiDonato, Anthony</creator><creator>Hayman, James</creator><creator>Kapoor, Rishhab</creator><creator>Kravitz, Saul</creator><creator>Sebastian, Sharon</creator><creator>Von Siebenthal, Martin</creator><creator>Bosch, Walter</creator><creator>Hurkmans, Coen</creator><creator>Yom, Sue S</creator><creator>Xiao, Ying</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2030-9892</orcidid></search><sort><creationdate>20231101</creationdate><title>Operational Ontology for Oncology (O3): A Professional Society-Based, Multistakeholder, Consensus-Driven Informatics Standard Supporting Clinical and Research Use of Real-World Data From Patients Treated for Cancer</title><author>Mayo, Charles S ; Feng, Mary U ; Brock, Kristy K ; Kudner, Randi ; Balter, Peter ; Buchsbaum, Jeffrey C ; Caissie, Amanda ; Covington, Elizabeth ; Daugherty, Emily C ; Dekker, Andre L ; Fuller, Clifton D ; Hallstrom, Anneka L ; Hong, David S ; Hong, Julian C ; Kamran, Sophia C ; Katsoulakis, Eva ; Kildea, John ; Krauze, Andra V ; Kruse, Jon J ; McNutt, Tod ; Mierzwa, Michelle ; Moreno, Amy ; Palta, Jatinder R ; Popple, Richard ; Purdie, Thomas G ; Richardson, Susan ; Sharp, Gregory C ; Satomi, Shiraishi ; Tarbox, Lawrence R ; Venkatesan, Aradhana M ; Witztum, Alon ; Woods, Kelly E ; Yao, Yuan ; Farahani, Keyvan ; Aneja, Sanjay ; Gabriel, Peter E ; Hadjiiski, Lubomire ; Ruan, Dan ; Siewerdsen, Jeffrey H ; Bratt, Steven ; Casagni, Michelle ; Chen, Su ; Christodouleas, John C ; DiDonato, Anthony ; Hayman, James ; Kapoor, Rishhab ; Kravitz, Saul ; Sebastian, Sharon ; Von Siebenthal, Martin ; Bosch, Walter ; Hurkmans, Coen ; Yom, Sue S ; Xiao, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-d2791ccd6feea5e6a2d72048fe2a9c38215c7fcf873c5696e18188b2f915dff03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Consensus</topic><topic>Humans</topic><topic>Informatics</topic><topic>Neoplasms - radiotherapy</topic><topic>Radiation Oncology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayo, Charles S</creatorcontrib><creatorcontrib>Feng, Mary U</creatorcontrib><creatorcontrib>Brock, Kristy K</creatorcontrib><creatorcontrib>Kudner, Randi</creatorcontrib><creatorcontrib>Balter, Peter</creatorcontrib><creatorcontrib>Buchsbaum, Jeffrey C</creatorcontrib><creatorcontrib>Caissie, Amanda</creatorcontrib><creatorcontrib>Covington, Elizabeth</creatorcontrib><creatorcontrib>Daugherty, Emily C</creatorcontrib><creatorcontrib>Dekker, Andre L</creatorcontrib><creatorcontrib>Fuller, Clifton D</creatorcontrib><creatorcontrib>Hallstrom, Anneka L</creatorcontrib><creatorcontrib>Hong, David S</creatorcontrib><creatorcontrib>Hong, Julian C</creatorcontrib><creatorcontrib>Kamran, Sophia C</creatorcontrib><creatorcontrib>Katsoulakis, Eva</creatorcontrib><creatorcontrib>Kildea, John</creatorcontrib><creatorcontrib>Krauze, Andra V</creatorcontrib><creatorcontrib>Kruse, Jon J</creatorcontrib><creatorcontrib>McNutt, Tod</creatorcontrib><creatorcontrib>Mierzwa, Michelle</creatorcontrib><creatorcontrib>Moreno, Amy</creatorcontrib><creatorcontrib>Palta, Jatinder R</creatorcontrib><creatorcontrib>Popple, Richard</creatorcontrib><creatorcontrib>Purdie, Thomas G</creatorcontrib><creatorcontrib>Richardson, Susan</creatorcontrib><creatorcontrib>Sharp, Gregory C</creatorcontrib><creatorcontrib>Satomi, Shiraishi</creatorcontrib><creatorcontrib>Tarbox, Lawrence R</creatorcontrib><creatorcontrib>Venkatesan, Aradhana M</creatorcontrib><creatorcontrib>Witztum, Alon</creatorcontrib><creatorcontrib>Woods, Kelly E</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Farahani, Keyvan</creatorcontrib><creatorcontrib>Aneja, Sanjay</creatorcontrib><creatorcontrib>Gabriel, Peter E</creatorcontrib><creatorcontrib>Hadjiiski, Lubomire</creatorcontrib><creatorcontrib>Ruan, Dan</creatorcontrib><creatorcontrib>Siewerdsen, Jeffrey H</creatorcontrib><creatorcontrib>Bratt, Steven</creatorcontrib><creatorcontrib>Casagni, Michelle</creatorcontrib><creatorcontrib>Chen, Su</creatorcontrib><creatorcontrib>Christodouleas, John C</creatorcontrib><creatorcontrib>DiDonato, Anthony</creatorcontrib><creatorcontrib>Hayman, James</creatorcontrib><creatorcontrib>Kapoor, Rishhab</creatorcontrib><creatorcontrib>Kravitz, Saul</creatorcontrib><creatorcontrib>Sebastian, Sharon</creatorcontrib><creatorcontrib>Von Siebenthal, Martin</creatorcontrib><creatorcontrib>Bosch, Walter</creatorcontrib><creatorcontrib>Hurkmans, Coen</creatorcontrib><creatorcontrib>Yom, Sue S</creatorcontrib><creatorcontrib>Xiao, Ying</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of radiation oncology, biology, physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mayo, Charles S</au><au>Feng, Mary U</au><au>Brock, Kristy K</au><au>Kudner, Randi</au><au>Balter, Peter</au><au>Buchsbaum, Jeffrey C</au><au>Caissie, Amanda</au><au>Covington, Elizabeth</au><au>Daugherty, Emily C</au><au>Dekker, Andre L</au><au>Fuller, Clifton D</au><au>Hallstrom, Anneka L</au><au>Hong, David S</au><au>Hong, Julian C</au><au>Kamran, Sophia C</au><au>Katsoulakis, Eva</au><au>Kildea, John</au><au>Krauze, Andra V</au><au>Kruse, Jon J</au><au>McNutt, Tod</au><au>Mierzwa, Michelle</au><au>Moreno, Amy</au><au>Palta, Jatinder R</au><au>Popple, Richard</au><au>Purdie, Thomas G</au><au>Richardson, Susan</au><au>Sharp, Gregory C</au><au>Satomi, Shiraishi</au><au>Tarbox, Lawrence R</au><au>Venkatesan, Aradhana M</au><au>Witztum, Alon</au><au>Woods, Kelly E</au><au>Yao, Yuan</au><au>Farahani, Keyvan</au><au>Aneja, Sanjay</au><au>Gabriel, Peter E</au><au>Hadjiiski, Lubomire</au><au>Ruan, Dan</au><au>Siewerdsen, Jeffrey H</au><au>Bratt, Steven</au><au>Casagni, Michelle</au><au>Chen, Su</au><au>Christodouleas, John C</au><au>DiDonato, Anthony</au><au>Hayman, James</au><au>Kapoor, Rishhab</au><au>Kravitz, Saul</au><au>Sebastian, Sharon</au><au>Von Siebenthal, Martin</au><au>Bosch, Walter</au><au>Hurkmans, Coen</au><au>Yom, Sue S</au><au>Xiao, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operational Ontology for Oncology (O3): A Professional Society-Based, Multistakeholder, Consensus-Driven Informatics Standard Supporting Clinical and Research Use of Real-World Data From Patients Treated for Cancer</atitle><jtitle>International journal of radiation oncology, biology, physics</jtitle><addtitle>Int J Radiat Oncol Biol Phys</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>117</volume><issue>3</issue><spage>533</spage><epage>550</epage><pages>533-550</pages><issn>0360-3016</issn><issn>1879-355X</issn><eissn>1879-355X</eissn><abstract>The ongoing lack of data standardization severely undermines the potential for automated learning from the vast amount of information routinely archived in electronic health records (EHRs), radiation oncology information systems, treatment planning systems, and other cancer care and outcomes databases. We sought to create a standardized ontology for clinical data, social determinants of health, and other radiation oncology concepts and interrelationships. The American Association of Physicists in Medicine's Big Data Science Committee was initiated in July 2019 to explore common ground from the stakeholders' collective experience of issues that typically compromise the formation of large inter- and intra-institutional databases from EHRs. The Big Data Science Committee adopted an iterative, cyclical approach to engaging stakeholders beyond its membership to optimize the integration of diverse perspectives from the community. We developed the Operational Ontology for Oncology (O3), which identified 42 key elements, 359 attributes, 144 value sets, and 155 relationships ranked in relative importance of clinical significance, likelihood of availability in EHRs, and the ability to modify routine clinical processes to permit aggregation. Recommendations are provided for best use and development of the O3 to 4 constituencies: device manufacturers, centers of clinical care, researchers, and professional societies. O3 is designed to extend and interoperate with existing global infrastructure and data science standards. The implementation of these recommendations will lower the barriers for aggregation of information that could be used to create large, representative, findable, accessible, interoperable, and reusable data sets to support the scientific objectives of grant programs. The construction of comprehensive "real-world" data sets and application of advanced analytical techniques, including artificial intelligence, holds the potential to revolutionize patient management and improve outcomes by leveraging increased access to information derived from larger, more representative data sets.</abstract><cop>United States</cop><pmid>37244628</pmid><doi>10.1016/j.ijrobp.2023.05.033</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2030-9892</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-3016
ispartof International journal of radiation oncology, biology, physics, 2023-11, Vol.117 (3), p.533-550
issn 0360-3016
1879-355X
1879-355X
language eng
recordid cdi_proquest_miscellaneous_2820029735
source MEDLINE; Elsevier ScienceDirect Journals
subjects Artificial Intelligence
Consensus
Humans
Informatics
Neoplasms - radiotherapy
Radiation Oncology
title Operational Ontology for Oncology (O3): A Professional Society-Based, Multistakeholder, Consensus-Driven Informatics Standard Supporting Clinical and Research Use of Real-World Data From Patients Treated for Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operational%20Ontology%20for%20Oncology%20(O3):%20A%20Professional%20Society-Based,%20Multistakeholder,%20Consensus-Driven%20Informatics%20Standard%20Supporting%20Clinical%20and%20Research%20Use%20of%20Real-World%20Data%20From%20Patients%20Treated%20for%20Cancer&rft.jtitle=International%20journal%20of%20radiation%20oncology,%20biology,%20physics&rft.au=Mayo,%20Charles%20S&rft.date=2023-11-01&rft.volume=117&rft.issue=3&rft.spage=533&rft.epage=550&rft.pages=533-550&rft.issn=0360-3016&rft.eissn=1879-355X&rft_id=info:doi/10.1016/j.ijrobp.2023.05.033&rft_dat=%3Cproquest_cross%3E2820029735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2820029735&rft_id=info:pmid/37244628&rfr_iscdi=true