High‐Performance Organic Solar Cells Containing Pyrido[2,3‐b]quinoxaline‐Core‐Based Small‐Molecule Acceptors with Optimized Orbit Overlap Lengths and Molecular Packing
The central core in A‐DA1D‐A‐type small‐molecule acceptor (SMAs) plays an important role in determining the efficiency of organic solar cells (OSCs), while the principles governing the efficient design of SMAs remain elusive. Herein, we developed a series of SMAs with pyrido[2,3‐b]quinoxaline (PyQx)...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-07, Vol.62 (30), p.e202304127-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 30 |
container_start_page | e202304127 |
container_title | Angewandte Chemie International Edition |
container_volume | 62 |
creator | Xu, Tongle Luo, Zhenghui Ma, Ruijie Chen, Zhanxiang Dela Peña, Top Archie Liu, Heng Wei, Qi Li, Mingjie Zhang, Cai'e Wu, Jiaying Lu, Xinhui Li, Gang Yang, Chuluo |
description | The central core in A‐DA1D‐A‐type small‐molecule acceptor (SMAs) plays an important role in determining the efficiency of organic solar cells (OSCs), while the principles governing the efficient design of SMAs remain elusive. Herein, we developed a series of SMAs with pyrido[2,3‐b]quinoxaline (PyQx) as new electron‐deficient unit by combining with the cascade‐chlorination strategy, namely Py1, Py2, Py3, Py4 and Py5. The introduction of chlorine atoms reduces the intramolecular charge transfer effects but elevates the LUMO values. Density functional theory (DFT) reveals that Py2 with ortho chlorine substituted PyQx and Py5 with two chlorine atoms yield larger dipole moments and smaller π⋅⋅⋅π stacking distances, as compared with the other three acceptors. Moreover, Py2 shows the strongest light absorption capability induced by extended orbit overlap lengths and more efficient packing structures in the dimers. These features endow the best device performance of Py2 due to the better molecular packing and aggregation behaviors, more suitable domain sizes with better exciton dissociation and charge recombination. This study highlights the significance of incorporating large dipole moments, small π⋅⋅⋅π stacking distances and extended orbit overlap lengths in dimers into the development of high‐performance SMAs, providing insight into the design of efficient A‐DA1D‐A‐type SMAs for OSCs.
We developed a series of SMAs (Py1–Py5) by combining pyrido[2,3‐b]quinoxaline (PyQx) as new electron‐deficient unit with the strategy of cascade chlorination. Py2‐based device yields the best device performance due to the better molecular packing and aggregation behaviors induced by large dipole moments, small π⋅⋅⋅π stacking distances and extended orbit overlap lengths in dimers. |
doi_str_mv | 10.1002/anie.202304127 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2820029080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820029080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3457-14208ad346b023ba5d29b13e35c559c42f798f1d038e29cd80397311cc25ebe43</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS1ERduBLUvkJQsy-Cepk-UQFVppaEYqrBCKHOdmxuDYqZ3QDisegVfhlXgSPJppu2R1faXvHF-dg9BLSuaUEPZWWg1zRhgnKWXiCTqhGaMJF4I_je-U80TkGT1GpyF8i3yek7Nn6JgLxhkV6Qn6c6HXm7-_fq_Ad8730irAlV9HW4WvnZEel2BMwKWzo9RW2zVebb1u3Rf2hkdd8_Vm0tbdSaMtxL10fjfeyQAtvu6lMXH76AyoyQBeKAXD6HzAt3rc4GoYda9_RrLyjR5x9QO8kQNegl2Pm4ClbfFBGw9ZSfU9_v8cHXXSBHhxmDP0-f35p_IiWVYfLsvFMlE8zURCU0Zy2fL0rInpNDJrWdFQDjxTWVaolHWiyDvaEp4DK1SbE14ITqlSLIMGUj5Dr_e-g3c3E4Sx7nVQMQxpwU2hZjmLgRYkCmdovkeVdyF46OrB6176bU1Jvaup3tVUP9QUBa8O3lPTQ_uA3_cSgWIP3GoD2__Y1Yury_NH83_9lqYV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820029080</pqid></control><display><type>article</type><title>High‐Performance Organic Solar Cells Containing Pyrido[2,3‐b]quinoxaline‐Core‐Based Small‐Molecule Acceptors with Optimized Orbit Overlap Lengths and Molecular Packing</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Tongle ; Luo, Zhenghui ; Ma, Ruijie ; Chen, Zhanxiang ; Dela Peña, Top Archie ; Liu, Heng ; Wei, Qi ; Li, Mingjie ; Zhang, Cai'e ; Wu, Jiaying ; Lu, Xinhui ; Li, Gang ; Yang, Chuluo</creator><creatorcontrib>Xu, Tongle ; Luo, Zhenghui ; Ma, Ruijie ; Chen, Zhanxiang ; Dela Peña, Top Archie ; Liu, Heng ; Wei, Qi ; Li, Mingjie ; Zhang, Cai'e ; Wu, Jiaying ; Lu, Xinhui ; Li, Gang ; Yang, Chuluo</creatorcontrib><description>The central core in A‐DA1D‐A‐type small‐molecule acceptor (SMAs) plays an important role in determining the efficiency of organic solar cells (OSCs), while the principles governing the efficient design of SMAs remain elusive. Herein, we developed a series of SMAs with pyrido[2,3‐b]quinoxaline (PyQx) as new electron‐deficient unit by combining with the cascade‐chlorination strategy, namely Py1, Py2, Py3, Py4 and Py5. The introduction of chlorine atoms reduces the intramolecular charge transfer effects but elevates the LUMO values. Density functional theory (DFT) reveals that Py2 with ortho chlorine substituted PyQx and Py5 with two chlorine atoms yield larger dipole moments and smaller π⋅⋅⋅π stacking distances, as compared with the other three acceptors. Moreover, Py2 shows the strongest light absorption capability induced by extended orbit overlap lengths and more efficient packing structures in the dimers. These features endow the best device performance of Py2 due to the better molecular packing and aggregation behaviors, more suitable domain sizes with better exciton dissociation and charge recombination. This study highlights the significance of incorporating large dipole moments, small π⋅⋅⋅π stacking distances and extended orbit overlap lengths in dimers into the development of high‐performance SMAs, providing insight into the design of efficient A‐DA1D‐A‐type SMAs for OSCs.
We developed a series of SMAs (Py1–Py5) by combining pyrido[2,3‐b]quinoxaline (PyQx) as new electron‐deficient unit with the strategy of cascade chlorination. Py2‐based device yields the best device performance due to the better molecular packing and aggregation behaviors induced by large dipole moments, small π⋅⋅⋅π stacking distances and extended orbit overlap lengths in dimers.</description><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202304127</identifier><identifier>PMID: 37232174</identifier><language>eng</language><publisher>Germany</publisher><subject>Chlorination ; Molecular Packing ; Pyrido[2,3-b]Quinoxaline ; Small-Molecule Acceptor ; Solar Cells</subject><ispartof>Angewandte Chemie International Edition, 2023-07, Vol.62 (30), p.e202304127-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3457-14208ad346b023ba5d29b13e35c559c42f798f1d038e29cd80397311cc25ebe43</citedby><cites>FETCH-LOGICAL-c3457-14208ad346b023ba5d29b13e35c559c42f798f1d038e29cd80397311cc25ebe43</cites><orcidid>0000-0001-9337-3460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202304127$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202304127$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37232174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Tongle</creatorcontrib><creatorcontrib>Luo, Zhenghui</creatorcontrib><creatorcontrib>Ma, Ruijie</creatorcontrib><creatorcontrib>Chen, Zhanxiang</creatorcontrib><creatorcontrib>Dela Peña, Top Archie</creatorcontrib><creatorcontrib>Liu, Heng</creatorcontrib><creatorcontrib>Wei, Qi</creatorcontrib><creatorcontrib>Li, Mingjie</creatorcontrib><creatorcontrib>Zhang, Cai'e</creatorcontrib><creatorcontrib>Wu, Jiaying</creatorcontrib><creatorcontrib>Lu, Xinhui</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Yang, Chuluo</creatorcontrib><title>High‐Performance Organic Solar Cells Containing Pyrido[2,3‐b]quinoxaline‐Core‐Based Small‐Molecule Acceptors with Optimized Orbit Overlap Lengths and Molecular Packing</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The central core in A‐DA1D‐A‐type small‐molecule acceptor (SMAs) plays an important role in determining the efficiency of organic solar cells (OSCs), while the principles governing the efficient design of SMAs remain elusive. Herein, we developed a series of SMAs with pyrido[2,3‐b]quinoxaline (PyQx) as new electron‐deficient unit by combining with the cascade‐chlorination strategy, namely Py1, Py2, Py3, Py4 and Py5. The introduction of chlorine atoms reduces the intramolecular charge transfer effects but elevates the LUMO values. Density functional theory (DFT) reveals that Py2 with ortho chlorine substituted PyQx and Py5 with two chlorine atoms yield larger dipole moments and smaller π⋅⋅⋅π stacking distances, as compared with the other three acceptors. Moreover, Py2 shows the strongest light absorption capability induced by extended orbit overlap lengths and more efficient packing structures in the dimers. These features endow the best device performance of Py2 due to the better molecular packing and aggregation behaviors, more suitable domain sizes with better exciton dissociation and charge recombination. This study highlights the significance of incorporating large dipole moments, small π⋅⋅⋅π stacking distances and extended orbit overlap lengths in dimers into the development of high‐performance SMAs, providing insight into the design of efficient A‐DA1D‐A‐type SMAs for OSCs.
We developed a series of SMAs (Py1–Py5) by combining pyrido[2,3‐b]quinoxaline (PyQx) as new electron‐deficient unit with the strategy of cascade chlorination. Py2‐based device yields the best device performance due to the better molecular packing and aggregation behaviors induced by large dipole moments, small π⋅⋅⋅π stacking distances and extended orbit overlap lengths in dimers.</description><subject>Chlorination</subject><subject>Molecular Packing</subject><subject>Pyrido[2,3-b]Quinoxaline</subject><subject>Small-Molecule Acceptor</subject><subject>Solar Cells</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS1ERduBLUvkJQsy-Cepk-UQFVppaEYqrBCKHOdmxuDYqZ3QDisegVfhlXgSPJppu2R1faXvHF-dg9BLSuaUEPZWWg1zRhgnKWXiCTqhGaMJF4I_je-U80TkGT1GpyF8i3yek7Nn6JgLxhkV6Qn6c6HXm7-_fq_Ad8730irAlV9HW4WvnZEel2BMwKWzo9RW2zVebb1u3Rf2hkdd8_Vm0tbdSaMtxL10fjfeyQAtvu6lMXH76AyoyQBeKAXD6HzAt3rc4GoYda9_RrLyjR5x9QO8kQNegl2Pm4ClbfFBGw9ZSfU9_v8cHXXSBHhxmDP0-f35p_IiWVYfLsvFMlE8zURCU0Zy2fL0rInpNDJrWdFQDjxTWVaolHWiyDvaEp4DK1SbE14ITqlSLIMGUj5Dr_e-g3c3E4Sx7nVQMQxpwU2hZjmLgRYkCmdovkeVdyF46OrB6176bU1Jvaup3tVUP9QUBa8O3lPTQ_uA3_cSgWIP3GoD2__Y1Yury_NH83_9lqYV</recordid><startdate>20230724</startdate><enddate>20230724</enddate><creator>Xu, Tongle</creator><creator>Luo, Zhenghui</creator><creator>Ma, Ruijie</creator><creator>Chen, Zhanxiang</creator><creator>Dela Peña, Top Archie</creator><creator>Liu, Heng</creator><creator>Wei, Qi</creator><creator>Li, Mingjie</creator><creator>Zhang, Cai'e</creator><creator>Wu, Jiaying</creator><creator>Lu, Xinhui</creator><creator>Li, Gang</creator><creator>Yang, Chuluo</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9337-3460</orcidid></search><sort><creationdate>20230724</creationdate><title>High‐Performance Organic Solar Cells Containing Pyrido[2,3‐b]quinoxaline‐Core‐Based Small‐Molecule Acceptors with Optimized Orbit Overlap Lengths and Molecular Packing</title><author>Xu, Tongle ; Luo, Zhenghui ; Ma, Ruijie ; Chen, Zhanxiang ; Dela Peña, Top Archie ; Liu, Heng ; Wei, Qi ; Li, Mingjie ; Zhang, Cai'e ; Wu, Jiaying ; Lu, Xinhui ; Li, Gang ; Yang, Chuluo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3457-14208ad346b023ba5d29b13e35c559c42f798f1d038e29cd80397311cc25ebe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chlorination</topic><topic>Molecular Packing</topic><topic>Pyrido[2,3-b]Quinoxaline</topic><topic>Small-Molecule Acceptor</topic><topic>Solar Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Tongle</creatorcontrib><creatorcontrib>Luo, Zhenghui</creatorcontrib><creatorcontrib>Ma, Ruijie</creatorcontrib><creatorcontrib>Chen, Zhanxiang</creatorcontrib><creatorcontrib>Dela Peña, Top Archie</creatorcontrib><creatorcontrib>Liu, Heng</creatorcontrib><creatorcontrib>Wei, Qi</creatorcontrib><creatorcontrib>Li, Mingjie</creatorcontrib><creatorcontrib>Zhang, Cai'e</creatorcontrib><creatorcontrib>Wu, Jiaying</creatorcontrib><creatorcontrib>Lu, Xinhui</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Yang, Chuluo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Tongle</au><au>Luo, Zhenghui</au><au>Ma, Ruijie</au><au>Chen, Zhanxiang</au><au>Dela Peña, Top Archie</au><au>Liu, Heng</au><au>Wei, Qi</au><au>Li, Mingjie</au><au>Zhang, Cai'e</au><au>Wu, Jiaying</au><au>Lu, Xinhui</au><au>Li, Gang</au><au>Yang, Chuluo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Performance Organic Solar Cells Containing Pyrido[2,3‐b]quinoxaline‐Core‐Based Small‐Molecule Acceptors with Optimized Orbit Overlap Lengths and Molecular Packing</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-07-24</date><risdate>2023</risdate><volume>62</volume><issue>30</issue><spage>e202304127</spage><epage>n/a</epage><pages>e202304127-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The central core in A‐DA1D‐A‐type small‐molecule acceptor (SMAs) plays an important role in determining the efficiency of organic solar cells (OSCs), while the principles governing the efficient design of SMAs remain elusive. Herein, we developed a series of SMAs with pyrido[2,3‐b]quinoxaline (PyQx) as new electron‐deficient unit by combining with the cascade‐chlorination strategy, namely Py1, Py2, Py3, Py4 and Py5. The introduction of chlorine atoms reduces the intramolecular charge transfer effects but elevates the LUMO values. Density functional theory (DFT) reveals that Py2 with ortho chlorine substituted PyQx and Py5 with two chlorine atoms yield larger dipole moments and smaller π⋅⋅⋅π stacking distances, as compared with the other three acceptors. Moreover, Py2 shows the strongest light absorption capability induced by extended orbit overlap lengths and more efficient packing structures in the dimers. These features endow the best device performance of Py2 due to the better molecular packing and aggregation behaviors, more suitable domain sizes with better exciton dissociation and charge recombination. This study highlights the significance of incorporating large dipole moments, small π⋅⋅⋅π stacking distances and extended orbit overlap lengths in dimers into the development of high‐performance SMAs, providing insight into the design of efficient A‐DA1D‐A‐type SMAs for OSCs.
We developed a series of SMAs (Py1–Py5) by combining pyrido[2,3‐b]quinoxaline (PyQx) as new electron‐deficient unit with the strategy of cascade chlorination. Py2‐based device yields the best device performance due to the better molecular packing and aggregation behaviors induced by large dipole moments, small π⋅⋅⋅π stacking distances and extended orbit overlap lengths in dimers.</abstract><cop>Germany</cop><pmid>37232174</pmid><doi>10.1002/anie.202304127</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9337-3460</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2023-07, Vol.62 (30), p.e202304127-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2820029080 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Chlorination Molecular Packing Pyrido[2,3-b]Quinoxaline Small-Molecule Acceptor Solar Cells |
title | High‐Performance Organic Solar Cells Containing Pyrido[2,3‐b]quinoxaline‐Core‐Based Small‐Molecule Acceptors with Optimized Orbit Overlap Lengths and Molecular Packing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Performance%20Organic%20Solar%20Cells%20Containing%20Pyrido%5B2,3%E2%80%90b%5Dquinoxaline%E2%80%90Core%E2%80%90Based%20Small%E2%80%90Molecule%20Acceptors%20with%20Optimized%20Orbit%20Overlap%20Lengths%20and%20Molecular%20Packing&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Xu,%20Tongle&rft.date=2023-07-24&rft.volume=62&rft.issue=30&rft.spage=e202304127&rft.epage=n/a&rft.pages=e202304127-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202304127&rft_dat=%3Cproquest_cross%3E2820029080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2820029080&rft_id=info:pmid/37232174&rfr_iscdi=true |