Disynaptic inhibition shapes tuning of OFF-motion detectors in Drosophila

The circuitry underlying the detection of visual motion in Drosophila melanogaster is one of the best studied networks in neuroscience. Lately, electron microscopy reconstructions, algorithmic models, and functional studies have proposed a common motif for the cellular circuitry of an elementary mot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2023-06, Vol.33 (11), p.2260-2269.e4
Hauptverfasser: Braun, Amalia, Borst, Alexander, Meier, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2269.e4
container_issue 11
container_start_page 2260
container_title Current biology
container_volume 33
creator Braun, Amalia
Borst, Alexander
Meier, Matthias
description The circuitry underlying the detection of visual motion in Drosophila melanogaster is one of the best studied networks in neuroscience. Lately, electron microscopy reconstructions, algorithmic models, and functional studies have proposed a common motif for the cellular circuitry of an elementary motion detector based on both supralinear enhancement for preferred direction and sublinear suppression for null-direction motion. In T5 cells, however, all columnar input neurons (Tm1, Tm2, Tm4, and Tm9) are excitatory. So, how is null-direction suppression realized there? Using two-photon calcium imaging in combination with thermogenetics, optogenetics, apoptotics, and pharmacology, we discovered that it is via CT1, the GABAergic large-field amacrine cell, where the different processes have previously been shown to act in an electrically isolated way. Within each column, CT1 receives excitatory input from Tm9 and Tm1 and provides the sign-inverted, now inhibitory input signal onto T5. Ablating CT1 or knocking down GABA-receptor subunit Rdl significantly broadened the directional tuning of T5 cells. It thus appears that the signal of Tm1 and Tm9 is used both as an excitatory input for preferred direction enhancement and, through a sign inversion within the Tm1/Tm9-CT1 microcircuit, as an inhibitory input for null-direction suppression. •A columnar microcircuit improves directional tuning of T5 neurons•Tm1 and Tm9 neurons provide indirect inhibitory input to T5 via CT1•CT1 inhibits T5 via GABA-receptor subunit Rdl How is null-direction suppression realized in the Drosophila OFF-motion pathway? Braun et al. demonstrate that disynaptic inhibition within a columnar microcircuit through Tm1, Tm9, and CT1 mediates null-direction suppression. They identify GABA-receptor subunit Rdl as an important player in this operation. Algorithmic modeling underlines the results.
doi_str_mv 10.1016/j.cub.2023.05.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2820027450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982223006012</els_id><sourcerecordid>2820027450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-4520e46a129a384e2e905274adfd46b84e960489c78da6921968847d0f11f6ef3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EglL4ASwoI0vC2XEcW0yoUKhUiQVmy3Eu1FUbhzhB6r_HpcDIdNLde0_vPkKuKGQUqLhdZ3asMgYsz6DIAMojMqGyVClwXhyTCSgBqZKMnZHzENYAlEklTslZXrJcUEknZPHgwq413eBs4tqVq9zgfJuElekwJMPYuvY98U3yMp-nW_99q3FAO_g-REPy0Pvgu5XbmAty0phNwMufOSVv88fX2XO6fHlazO6Xqc2VGFJeMEAuDGXK5JIjQwUFK7mpm5qLKm5iaS6VLWVthGJUCSl5WUNDaSOwyafk5pDb9f5jxDDorQsWNxvToh-DZpIBxMACopQepDa2DD02uuvd1vQ7TUHvCeq1jgT1nqCGQkeC0XP9Ez9WW6z_HL_IouDuIMD45KfDXgfrsLVYuz5y0bV3_8R_AQOFgBc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820027450</pqid></control><display><type>article</type><title>Disynaptic inhibition shapes tuning of OFF-motion detectors in Drosophila</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Braun, Amalia ; Borst, Alexander ; Meier, Matthias</creator><creatorcontrib>Braun, Amalia ; Borst, Alexander ; Meier, Matthias</creatorcontrib><description>The circuitry underlying the detection of visual motion in Drosophila melanogaster is one of the best studied networks in neuroscience. Lately, electron microscopy reconstructions, algorithmic models, and functional studies have proposed a common motif for the cellular circuitry of an elementary motion detector based on both supralinear enhancement for preferred direction and sublinear suppression for null-direction motion. In T5 cells, however, all columnar input neurons (Tm1, Tm2, Tm4, and Tm9) are excitatory. So, how is null-direction suppression realized there? Using two-photon calcium imaging in combination with thermogenetics, optogenetics, apoptotics, and pharmacology, we discovered that it is via CT1, the GABAergic large-field amacrine cell, where the different processes have previously been shown to act in an electrically isolated way. Within each column, CT1 receives excitatory input from Tm9 and Tm1 and provides the sign-inverted, now inhibitory input signal onto T5. Ablating CT1 or knocking down GABA-receptor subunit Rdl significantly broadened the directional tuning of T5 cells. It thus appears that the signal of Tm1 and Tm9 is used both as an excitatory input for preferred direction enhancement and, through a sign inversion within the Tm1/Tm9-CT1 microcircuit, as an inhibitory input for null-direction suppression. •A columnar microcircuit improves directional tuning of T5 neurons•Tm1 and Tm9 neurons provide indirect inhibitory input to T5 via CT1•CT1 inhibits T5 via GABA-receptor subunit Rdl How is null-direction suppression realized in the Drosophila OFF-motion pathway? Braun et al. demonstrate that disynaptic inhibition within a columnar microcircuit through Tm1, Tm9, and CT1 mediates null-direction suppression. They identify GABA-receptor subunit Rdl as an important player in this operation. Algorithmic modeling underlines the results.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2023.05.007</identifier><identifier>PMID: 37236181</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Amacrine Cells ; Animals ; Columnar microcircuit ; CT1 neuron ; Direction selectivity ; Disynaptic inhibition ; Drosophila - physiology ; Drosophila melanogaster - genetics ; Drosophila neuroscience ; GABA receptor subunit Rdl ; Motion Perception - physiology ; Motion vision ; Null direction suppression ; Orientation, Spatial ; T5 OFF pathway ; Two photon calcium imaging ; Visual Pathways - physiology</subject><ispartof>Current biology, 2023-06, Vol.33 (11), p.2260-2269.e4</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-4520e46a129a384e2e905274adfd46b84e960489c78da6921968847d0f11f6ef3</citedby><cites>FETCH-LOGICAL-c396t-4520e46a129a384e2e905274adfd46b84e960489c78da6921968847d0f11f6ef3</cites><orcidid>0000-0002-9173-7862 ; 0000-0001-5537-8973 ; 0000-0003-3608-4384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cub.2023.05.007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37236181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Braun, Amalia</creatorcontrib><creatorcontrib>Borst, Alexander</creatorcontrib><creatorcontrib>Meier, Matthias</creatorcontrib><title>Disynaptic inhibition shapes tuning of OFF-motion detectors in Drosophila</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>The circuitry underlying the detection of visual motion in Drosophila melanogaster is one of the best studied networks in neuroscience. Lately, electron microscopy reconstructions, algorithmic models, and functional studies have proposed a common motif for the cellular circuitry of an elementary motion detector based on both supralinear enhancement for preferred direction and sublinear suppression for null-direction motion. In T5 cells, however, all columnar input neurons (Tm1, Tm2, Tm4, and Tm9) are excitatory. So, how is null-direction suppression realized there? Using two-photon calcium imaging in combination with thermogenetics, optogenetics, apoptotics, and pharmacology, we discovered that it is via CT1, the GABAergic large-field amacrine cell, where the different processes have previously been shown to act in an electrically isolated way. Within each column, CT1 receives excitatory input from Tm9 and Tm1 and provides the sign-inverted, now inhibitory input signal onto T5. Ablating CT1 or knocking down GABA-receptor subunit Rdl significantly broadened the directional tuning of T5 cells. It thus appears that the signal of Tm1 and Tm9 is used both as an excitatory input for preferred direction enhancement and, through a sign inversion within the Tm1/Tm9-CT1 microcircuit, as an inhibitory input for null-direction suppression. •A columnar microcircuit improves directional tuning of T5 neurons•Tm1 and Tm9 neurons provide indirect inhibitory input to T5 via CT1•CT1 inhibits T5 via GABA-receptor subunit Rdl How is null-direction suppression realized in the Drosophila OFF-motion pathway? Braun et al. demonstrate that disynaptic inhibition within a columnar microcircuit through Tm1, Tm9, and CT1 mediates null-direction suppression. They identify GABA-receptor subunit Rdl as an important player in this operation. Algorithmic modeling underlines the results.</description><subject>Amacrine Cells</subject><subject>Animals</subject><subject>Columnar microcircuit</subject><subject>CT1 neuron</subject><subject>Direction selectivity</subject><subject>Disynaptic inhibition</subject><subject>Drosophila - physiology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila neuroscience</subject><subject>GABA receptor subunit Rdl</subject><subject>Motion Perception - physiology</subject><subject>Motion vision</subject><subject>Null direction suppression</subject><subject>Orientation, Spatial</subject><subject>T5 OFF pathway</subject><subject>Two photon calcium imaging</subject><subject>Visual Pathways - physiology</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDFPwzAQhS0EglL4ASwoI0vC2XEcW0yoUKhUiQVmy3Eu1FUbhzhB6r_HpcDIdNLde0_vPkKuKGQUqLhdZ3asMgYsz6DIAMojMqGyVClwXhyTCSgBqZKMnZHzENYAlEklTslZXrJcUEknZPHgwq413eBs4tqVq9zgfJuElekwJMPYuvY98U3yMp-nW_99q3FAO_g-REPy0Pvgu5XbmAty0phNwMufOSVv88fX2XO6fHlazO6Xqc2VGFJeMEAuDGXK5JIjQwUFK7mpm5qLKm5iaS6VLWVthGJUCSl5WUNDaSOwyafk5pDb9f5jxDDorQsWNxvToh-DZpIBxMACopQepDa2DD02uuvd1vQ7TUHvCeq1jgT1nqCGQkeC0XP9Ez9WW6z_HL_IouDuIMD45KfDXgfrsLVYuz5y0bV3_8R_AQOFgBc</recordid><startdate>20230605</startdate><enddate>20230605</enddate><creator>Braun, Amalia</creator><creator>Borst, Alexander</creator><creator>Meier, Matthias</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9173-7862</orcidid><orcidid>https://orcid.org/0000-0001-5537-8973</orcidid><orcidid>https://orcid.org/0000-0003-3608-4384</orcidid></search><sort><creationdate>20230605</creationdate><title>Disynaptic inhibition shapes tuning of OFF-motion detectors in Drosophila</title><author>Braun, Amalia ; Borst, Alexander ; Meier, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-4520e46a129a384e2e905274adfd46b84e960489c78da6921968847d0f11f6ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amacrine Cells</topic><topic>Animals</topic><topic>Columnar microcircuit</topic><topic>CT1 neuron</topic><topic>Direction selectivity</topic><topic>Disynaptic inhibition</topic><topic>Drosophila - physiology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila neuroscience</topic><topic>GABA receptor subunit Rdl</topic><topic>Motion Perception - physiology</topic><topic>Motion vision</topic><topic>Null direction suppression</topic><topic>Orientation, Spatial</topic><topic>T5 OFF pathway</topic><topic>Two photon calcium imaging</topic><topic>Visual Pathways - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braun, Amalia</creatorcontrib><creatorcontrib>Borst, Alexander</creatorcontrib><creatorcontrib>Meier, Matthias</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braun, Amalia</au><au>Borst, Alexander</au><au>Meier, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disynaptic inhibition shapes tuning of OFF-motion detectors in Drosophila</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2023-06-05</date><risdate>2023</risdate><volume>33</volume><issue>11</issue><spage>2260</spage><epage>2269.e4</epage><pages>2260-2269.e4</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>The circuitry underlying the detection of visual motion in Drosophila melanogaster is one of the best studied networks in neuroscience. Lately, electron microscopy reconstructions, algorithmic models, and functional studies have proposed a common motif for the cellular circuitry of an elementary motion detector based on both supralinear enhancement for preferred direction and sublinear suppression for null-direction motion. In T5 cells, however, all columnar input neurons (Tm1, Tm2, Tm4, and Tm9) are excitatory. So, how is null-direction suppression realized there? Using two-photon calcium imaging in combination with thermogenetics, optogenetics, apoptotics, and pharmacology, we discovered that it is via CT1, the GABAergic large-field amacrine cell, where the different processes have previously been shown to act in an electrically isolated way. Within each column, CT1 receives excitatory input from Tm9 and Tm1 and provides the sign-inverted, now inhibitory input signal onto T5. Ablating CT1 or knocking down GABA-receptor subunit Rdl significantly broadened the directional tuning of T5 cells. It thus appears that the signal of Tm1 and Tm9 is used both as an excitatory input for preferred direction enhancement and, through a sign inversion within the Tm1/Tm9-CT1 microcircuit, as an inhibitory input for null-direction suppression. •A columnar microcircuit improves directional tuning of T5 neurons•Tm1 and Tm9 neurons provide indirect inhibitory input to T5 via CT1•CT1 inhibits T5 via GABA-receptor subunit Rdl How is null-direction suppression realized in the Drosophila OFF-motion pathway? Braun et al. demonstrate that disynaptic inhibition within a columnar microcircuit through Tm1, Tm9, and CT1 mediates null-direction suppression. They identify GABA-receptor subunit Rdl as an important player in this operation. Algorithmic modeling underlines the results.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>37236181</pmid><doi>10.1016/j.cub.2023.05.007</doi><orcidid>https://orcid.org/0000-0002-9173-7862</orcidid><orcidid>https://orcid.org/0000-0001-5537-8973</orcidid><orcidid>https://orcid.org/0000-0003-3608-4384</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2023-06, Vol.33 (11), p.2260-2269.e4
issn 0960-9822
1879-0445
language eng
recordid cdi_proquest_miscellaneous_2820027450
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Amacrine Cells
Animals
Columnar microcircuit
CT1 neuron
Direction selectivity
Disynaptic inhibition
Drosophila - physiology
Drosophila melanogaster - genetics
Drosophila neuroscience
GABA receptor subunit Rdl
Motion Perception - physiology
Motion vision
Null direction suppression
Orientation, Spatial
T5 OFF pathway
Two photon calcium imaging
Visual Pathways - physiology
title Disynaptic inhibition shapes tuning of OFF-motion detectors in Drosophila
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disynaptic%20inhibition%20shapes%20tuning%20of%20OFF-motion%20detectors%20in%20Drosophila&rft.jtitle=Current%20biology&rft.au=Braun,%20Amalia&rft.date=2023-06-05&rft.volume=33&rft.issue=11&rft.spage=2260&rft.epage=2269.e4&rft.pages=2260-2269.e4&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2023.05.007&rft_dat=%3Cproquest_cross%3E2820027450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2820027450&rft_id=info:pmid/37236181&rft_els_id=S0960982223006012&rfr_iscdi=true