Nanozyme colorimetric sensor array based on monatomic cobalt for the discrimination of sulfur-containing metal salts

The identification of sulfur-containing metal salts (SCMs) is of great interest because they play an important role in many biological processes and diseases. Here, we constructed a ternary channel colorimetric sensor array to detect multiple SCMs simultaneously, relying on monatomic Co embedded in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2023-08, Vol.456, p.131643-131643, Article 131643
Hauptverfasser: Wang, Hongsu, Wu, Fengling, Wu, Lifang, Guan, Jingqi, Niu, Xiaodi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The identification of sulfur-containing metal salts (SCMs) is of great interest because they play an important role in many biological processes and diseases. Here, we constructed a ternary channel colorimetric sensor array to detect multiple SCMs simultaneously, relying on monatomic Co embedded in nitrogen-doped graphene nanozyme (CoN4-G). Due to the unique structure, CoN4-G exhibits activity similar to native oxidases, capable of catalysing directly the oxidization of 3,3′,5,5′-tetramethylbenzidine (TMB) by O2 molecules independent of H2O2. Density functional theory (DFT) calculations suggest that CoN4-G has no potential barrier in the whole reaction route, thus presenting higher oxidase-like catalytic activity. Based on different degrees of TMB oxidation, different colorimetric response changes are obtained as "fingerprints" on the sensor array. The sensor array can discriminate different concentrations of unitary, binary, ternary, and quaternary SCMs and has been successfully applied to detect six real samples (soil, milk, red wine and egg white). To advance the field detection of the above four types of SCMs, we creatively propose a smartphone-based autonomous detection platform with a linear range of 1.6–320 μM and a limit of detection of 0.0778–0.218 μM, which demonstrates the potential use of sensor arrays in the application of disease diagnosis and food and environment monitoring. [Display omitted] •A simple and effective colorimetric sensor array was constructed based on CoN4-G.•The barrierless electron interaction led to the higher oxidase activity of CoN4-G.•The array could generate a fingerprint to identify various SCMs by LDA analysis.•The array gave low LODs for SCMs detection.•A smartphone-based APP was constructed to promote the on-site detection of SCMs.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2023.131643