Ferromagnetic single-atom spin catalyst for boosting water splitting
Heterogeneous single-atom spin catalysts combined with magnetic fields provide a powerful means for accelerating chemical reactions with enhanced metal utilization and reaction efficiency. However, designing these catalysts remains challenging due to the need for a high density of atomically dispers...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2023-07, Vol.18 (7), p.763-771 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 771 |
---|---|
container_issue | 7 |
container_start_page | 763 |
container_title | Nature nanotechnology |
container_volume | 18 |
creator | Sun, Tao Tang, Zhiyuan Zang, Wenjie Li, Zejun Li, Jing Li, Zhihao Cao, Liang Dominic Rodriguez, Jan Sebastian Mariano, Carl Osby M. Xu, Haomin Lyu, Pin Hai, Xiao Lin, Huihui Sheng, Xiaoyu Shi, Jiwei Zheng, Yi Lu, Ying-Rui He, Qian Chen, Jingsheng Novoselov, Kostya S. Chuang, Cheng-Hao Xi, Shibo Luo, Xin Lu, Jiong |
description | Heterogeneous single-atom spin catalysts combined with magnetic fields provide a powerful means for accelerating chemical reactions with enhanced metal utilization and reaction efficiency. However, designing these catalysts remains challenging due to the need for a high density of atomically dispersed active sites with a short-range quantum spin exchange interaction and long-range ferromagnetic ordering. Here, we devised a scalable hydrothermal approach involving an operando acidic environment for synthesizing various single-atom spin catalysts with widely tunable substitutional magnetic atoms (M
1
) in a MoS
2
host. Among all the M
1
/MoS
2
species, Ni
1
/MoS
2
adopts a distorted tetragonal structure that prompts both ferromagnetic coupling to nearby S atoms as well as adjacent Ni
1
sites, resulting in global room-temperature ferromagnetism. Such coupling benefits spin-selective charge transfer in oxygen evolution reactions to produce triplet O
2
. Furthermore, a mild magnetic field of ~0.5 T enhances the oxygen evolution reaction magnetocurrent by ~2,880% over Ni
1
/MoS
2
, leading to excellent activity and stability in both seawater and pure water splitting cells. As supported by operando characterizations and theoretical calculations, a great magnetic-field-enhanced oxygen evolution reaction performance over Ni
1
/MoS
2
is attributed to a field-induced spin alignment and spin density optimization over S active sites arising from field-regulated S(
p
)–Ni(
d)
hybridization, which in turn optimizes the adsorption energies for radical intermediates to reduce overall reaction barriers.
A versatile hydrothermal approach in an operando acidic environment created ferromagnetic single-atom spin catalysts (SASCs). Ni-based SASC exhibits a giant magnetic field enhancement of OER activity, boosting both water and saline water electrolysis. |
doi_str_mv | 10.1038/s41565-023-01407-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2820025151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820025151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-4e6583374f19742ab5be554388dbc9eb21fa1e2265194936ce64f0db3889f7a13</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgipvTL-BBCl68RPO3aY8ynQoDL3oOafd2dLTNTFJk397UzgkePCUhvzxveBC6pOSWEp7deUFlKjFhHBMqiML0CE2pEhnmPJfHh32mJujM-w0hkuVMnKIJV4xTKvgUPSzAOduadQehLhNfd-sGsAm2Tfy27pLSBNPsfEgq65LCWh-iSD5NABdBU4fhfI5OKtN4uNivM_S-eHybP-Pl69PL_H6JS65kwAJSmXGuREVzJZgpZAFSCp5lq6LMoWC0MhQYSyXNRc7TElJRkVURQV4pQ_kM3Yy5W2c_evBBt7UvoWlMB7b3mmWMECapHOj1H7qxvevi76IShORMchUVG1XprPcOKr11dWvcTlOih4712LGOHevvjvUQfbWP7osWVocnP6VGwEfg41W3Bvc7-5_YL-7zhec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840092537</pqid></control><display><type>article</type><title>Ferromagnetic single-atom spin catalyst for boosting water splitting</title><source>SpringerLink Journals</source><source>Nature</source><creator>Sun, Tao ; Tang, Zhiyuan ; Zang, Wenjie ; Li, Zejun ; Li, Jing ; Li, Zhihao ; Cao, Liang ; Dominic Rodriguez, Jan Sebastian ; Mariano, Carl Osby M. ; Xu, Haomin ; Lyu, Pin ; Hai, Xiao ; Lin, Huihui ; Sheng, Xiaoyu ; Shi, Jiwei ; Zheng, Yi ; Lu, Ying-Rui ; He, Qian ; Chen, Jingsheng ; Novoselov, Kostya S. ; Chuang, Cheng-Hao ; Xi, Shibo ; Luo, Xin ; Lu, Jiong</creator><creatorcontrib>Sun, Tao ; Tang, Zhiyuan ; Zang, Wenjie ; Li, Zejun ; Li, Jing ; Li, Zhihao ; Cao, Liang ; Dominic Rodriguez, Jan Sebastian ; Mariano, Carl Osby M. ; Xu, Haomin ; Lyu, Pin ; Hai, Xiao ; Lin, Huihui ; Sheng, Xiaoyu ; Shi, Jiwei ; Zheng, Yi ; Lu, Ying-Rui ; He, Qian ; Chen, Jingsheng ; Novoselov, Kostya S. ; Chuang, Cheng-Hao ; Xi, Shibo ; Luo, Xin ; Lu, Jiong</creatorcontrib><description>Heterogeneous single-atom spin catalysts combined with magnetic fields provide a powerful means for accelerating chemical reactions with enhanced metal utilization and reaction efficiency. However, designing these catalysts remains challenging due to the need for a high density of atomically dispersed active sites with a short-range quantum spin exchange interaction and long-range ferromagnetic ordering. Here, we devised a scalable hydrothermal approach involving an operando acidic environment for synthesizing various single-atom spin catalysts with widely tunable substitutional magnetic atoms (M
1
) in a MoS
2
host. Among all the M
1
/MoS
2
species, Ni
1
/MoS
2
adopts a distorted tetragonal structure that prompts both ferromagnetic coupling to nearby S atoms as well as adjacent Ni
1
sites, resulting in global room-temperature ferromagnetism. Such coupling benefits spin-selective charge transfer in oxygen evolution reactions to produce triplet O
2
. Furthermore, a mild magnetic field of ~0.5 T enhances the oxygen evolution reaction magnetocurrent by ~2,880% over Ni
1
/MoS
2
, leading to excellent activity and stability in both seawater and pure water splitting cells. As supported by operando characterizations and theoretical calculations, a great magnetic-field-enhanced oxygen evolution reaction performance over Ni
1
/MoS
2
is attributed to a field-induced spin alignment and spin density optimization over S active sites arising from field-regulated S(
p
)–Ni(
d)
hybridization, which in turn optimizes the adsorption energies for radical intermediates to reduce overall reaction barriers.
A versatile hydrothermal approach in an operando acidic environment created ferromagnetic single-atom spin catalysts (SASCs). Ni-based SASC exhibits a giant magnetic field enhancement of OER activity, boosting both water and saline water electrolysis.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-023-01407-1</identifier><identifier>PMID: 37231143</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/886 ; 639/638/161/886 ; Catalysts ; Charge transfer ; Chemical reactions ; Chemical synthesis ; Chemistry and Materials Science ; Coupling ; Density ; Electrolysis ; Electrolytic cells ; Electrons ; Evolution ; Ferromagnetism ; Hybridization ; Intermediates ; Magnetic fields ; Materials Science ; Molybdenum disulfide ; Nanotechnology ; Nanotechnology and Microengineering ; Optimization ; Oxygen ; Oxygen evolution reactions ; Room temperature ; Saline water ; Seawater ; Spin exchange ; Water splitting</subject><ispartof>Nature nanotechnology, 2023-07, Vol.18 (7), p.763-771</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-4e6583374f19742ab5be554388dbc9eb21fa1e2265194936ce64f0db3889f7a13</citedby><cites>FETCH-LOGICAL-c375t-4e6583374f19742ab5be554388dbc9eb21fa1e2265194936ce64f0db3889f7a13</cites><orcidid>0000-0002-3690-8235 ; 0000-0002-8521-3237 ; 0000-0003-3188-2803 ; 0000-0001-7453-7060 ; 0000-0002-7582-0674 ; 0000-0002-6002-5627 ; 0000-0002-7631-9769 ; 0000-0002-7997-3934 ; 0000-0002-5627-4153 ; 0000-0002-9487-1151 ; 0000-0001-8161-1521 ; 0000-0003-4891-3581 ; 0000-0003-4972-5371 ; 0000-0002-7080-0180 ; 0000-0003-3625-9324 ; 0009-0004-5709-9520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-023-01407-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-023-01407-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37231143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Tao</creatorcontrib><creatorcontrib>Tang, Zhiyuan</creatorcontrib><creatorcontrib>Zang, Wenjie</creatorcontrib><creatorcontrib>Li, Zejun</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Li, Zhihao</creatorcontrib><creatorcontrib>Cao, Liang</creatorcontrib><creatorcontrib>Dominic Rodriguez, Jan Sebastian</creatorcontrib><creatorcontrib>Mariano, Carl Osby M.</creatorcontrib><creatorcontrib>Xu, Haomin</creatorcontrib><creatorcontrib>Lyu, Pin</creatorcontrib><creatorcontrib>Hai, Xiao</creatorcontrib><creatorcontrib>Lin, Huihui</creatorcontrib><creatorcontrib>Sheng, Xiaoyu</creatorcontrib><creatorcontrib>Shi, Jiwei</creatorcontrib><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Lu, Ying-Rui</creatorcontrib><creatorcontrib>He, Qian</creatorcontrib><creatorcontrib>Chen, Jingsheng</creatorcontrib><creatorcontrib>Novoselov, Kostya S.</creatorcontrib><creatorcontrib>Chuang, Cheng-Hao</creatorcontrib><creatorcontrib>Xi, Shibo</creatorcontrib><creatorcontrib>Luo, Xin</creatorcontrib><creatorcontrib>Lu, Jiong</creatorcontrib><title>Ferromagnetic single-atom spin catalyst for boosting water splitting</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Heterogeneous single-atom spin catalysts combined with magnetic fields provide a powerful means for accelerating chemical reactions with enhanced metal utilization and reaction efficiency. However, designing these catalysts remains challenging due to the need for a high density of atomically dispersed active sites with a short-range quantum spin exchange interaction and long-range ferromagnetic ordering. Here, we devised a scalable hydrothermal approach involving an operando acidic environment for synthesizing various single-atom spin catalysts with widely tunable substitutional magnetic atoms (M
1
) in a MoS
2
host. Among all the M
1
/MoS
2
species, Ni
1
/MoS
2
adopts a distorted tetragonal structure that prompts both ferromagnetic coupling to nearby S atoms as well as adjacent Ni
1
sites, resulting in global room-temperature ferromagnetism. Such coupling benefits spin-selective charge transfer in oxygen evolution reactions to produce triplet O
2
. Furthermore, a mild magnetic field of ~0.5 T enhances the oxygen evolution reaction magnetocurrent by ~2,880% over Ni
1
/MoS
2
, leading to excellent activity and stability in both seawater and pure water splitting cells. As supported by operando characterizations and theoretical calculations, a great magnetic-field-enhanced oxygen evolution reaction performance over Ni
1
/MoS
2
is attributed to a field-induced spin alignment and spin density optimization over S active sites arising from field-regulated S(
p
)–Ni(
d)
hybridization, which in turn optimizes the adsorption energies for radical intermediates to reduce overall reaction barriers.
A versatile hydrothermal approach in an operando acidic environment created ferromagnetic single-atom spin catalysts (SASCs). Ni-based SASC exhibits a giant magnetic field enhancement of OER activity, boosting both water and saline water electrolysis.</description><subject>639/301/299/886</subject><subject>639/638/161/886</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Coupling</subject><subject>Density</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Electrons</subject><subject>Evolution</subject><subject>Ferromagnetism</subject><subject>Hybridization</subject><subject>Intermediates</subject><subject>Magnetic fields</subject><subject>Materials Science</subject><subject>Molybdenum disulfide</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optimization</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>Room temperature</subject><subject>Saline water</subject><subject>Seawater</subject><subject>Spin exchange</subject><subject>Water splitting</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp90E9LwzAYBvAgipvTL-BBCl68RPO3aY8ynQoDL3oOafd2dLTNTFJk397UzgkePCUhvzxveBC6pOSWEp7deUFlKjFhHBMqiML0CE2pEhnmPJfHh32mJujM-w0hkuVMnKIJV4xTKvgUPSzAOduadQehLhNfd-sGsAm2Tfy27pLSBNPsfEgq65LCWh-iSD5NABdBU4fhfI5OKtN4uNivM_S-eHybP-Pl69PL_H6JS65kwAJSmXGuREVzJZgpZAFSCp5lq6LMoWC0MhQYSyXNRc7TElJRkVURQV4pQ_kM3Yy5W2c_evBBt7UvoWlMB7b3mmWMECapHOj1H7qxvevi76IShORMchUVG1XprPcOKr11dWvcTlOih4712LGOHevvjvUQfbWP7osWVocnP6VGwEfg41W3Bvc7-5_YL-7zhec</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Sun, Tao</creator><creator>Tang, Zhiyuan</creator><creator>Zang, Wenjie</creator><creator>Li, Zejun</creator><creator>Li, Jing</creator><creator>Li, Zhihao</creator><creator>Cao, Liang</creator><creator>Dominic Rodriguez, Jan Sebastian</creator><creator>Mariano, Carl Osby M.</creator><creator>Xu, Haomin</creator><creator>Lyu, Pin</creator><creator>Hai, Xiao</creator><creator>Lin, Huihui</creator><creator>Sheng, Xiaoyu</creator><creator>Shi, Jiwei</creator><creator>Zheng, Yi</creator><creator>Lu, Ying-Rui</creator><creator>He, Qian</creator><creator>Chen, Jingsheng</creator><creator>Novoselov, Kostya S.</creator><creator>Chuang, Cheng-Hao</creator><creator>Xi, Shibo</creator><creator>Luo, Xin</creator><creator>Lu, Jiong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3690-8235</orcidid><orcidid>https://orcid.org/0000-0002-8521-3237</orcidid><orcidid>https://orcid.org/0000-0003-3188-2803</orcidid><orcidid>https://orcid.org/0000-0001-7453-7060</orcidid><orcidid>https://orcid.org/0000-0002-7582-0674</orcidid><orcidid>https://orcid.org/0000-0002-6002-5627</orcidid><orcidid>https://orcid.org/0000-0002-7631-9769</orcidid><orcidid>https://orcid.org/0000-0002-7997-3934</orcidid><orcidid>https://orcid.org/0000-0002-5627-4153</orcidid><orcidid>https://orcid.org/0000-0002-9487-1151</orcidid><orcidid>https://orcid.org/0000-0001-8161-1521</orcidid><orcidid>https://orcid.org/0000-0003-4891-3581</orcidid><orcidid>https://orcid.org/0000-0003-4972-5371</orcidid><orcidid>https://orcid.org/0000-0002-7080-0180</orcidid><orcidid>https://orcid.org/0000-0003-3625-9324</orcidid><orcidid>https://orcid.org/0009-0004-5709-9520</orcidid></search><sort><creationdate>20230701</creationdate><title>Ferromagnetic single-atom spin catalyst for boosting water splitting</title><author>Sun, Tao ; Tang, Zhiyuan ; Zang, Wenjie ; Li, Zejun ; Li, Jing ; Li, Zhihao ; Cao, Liang ; Dominic Rodriguez, Jan Sebastian ; Mariano, Carl Osby M. ; Xu, Haomin ; Lyu, Pin ; Hai, Xiao ; Lin, Huihui ; Sheng, Xiaoyu ; Shi, Jiwei ; Zheng, Yi ; Lu, Ying-Rui ; He, Qian ; Chen, Jingsheng ; Novoselov, Kostya S. ; Chuang, Cheng-Hao ; Xi, Shibo ; Luo, Xin ; Lu, Jiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-4e6583374f19742ab5be554388dbc9eb21fa1e2265194936ce64f0db3889f7a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/301/299/886</topic><topic>639/638/161/886</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Coupling</topic><topic>Density</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Electrons</topic><topic>Evolution</topic><topic>Ferromagnetism</topic><topic>Hybridization</topic><topic>Intermediates</topic><topic>Magnetic fields</topic><topic>Materials Science</topic><topic>Molybdenum disulfide</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optimization</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>Room temperature</topic><topic>Saline water</topic><topic>Seawater</topic><topic>Spin exchange</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Tao</creatorcontrib><creatorcontrib>Tang, Zhiyuan</creatorcontrib><creatorcontrib>Zang, Wenjie</creatorcontrib><creatorcontrib>Li, Zejun</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Li, Zhihao</creatorcontrib><creatorcontrib>Cao, Liang</creatorcontrib><creatorcontrib>Dominic Rodriguez, Jan Sebastian</creatorcontrib><creatorcontrib>Mariano, Carl Osby M.</creatorcontrib><creatorcontrib>Xu, Haomin</creatorcontrib><creatorcontrib>Lyu, Pin</creatorcontrib><creatorcontrib>Hai, Xiao</creatorcontrib><creatorcontrib>Lin, Huihui</creatorcontrib><creatorcontrib>Sheng, Xiaoyu</creatorcontrib><creatorcontrib>Shi, Jiwei</creatorcontrib><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Lu, Ying-Rui</creatorcontrib><creatorcontrib>He, Qian</creatorcontrib><creatorcontrib>Chen, Jingsheng</creatorcontrib><creatorcontrib>Novoselov, Kostya S.</creatorcontrib><creatorcontrib>Chuang, Cheng-Hao</creatorcontrib><creatorcontrib>Xi, Shibo</creatorcontrib><creatorcontrib>Luo, Xin</creatorcontrib><creatorcontrib>Lu, Jiong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Tao</au><au>Tang, Zhiyuan</au><au>Zang, Wenjie</au><au>Li, Zejun</au><au>Li, Jing</au><au>Li, Zhihao</au><au>Cao, Liang</au><au>Dominic Rodriguez, Jan Sebastian</au><au>Mariano, Carl Osby M.</au><au>Xu, Haomin</au><au>Lyu, Pin</au><au>Hai, Xiao</au><au>Lin, Huihui</au><au>Sheng, Xiaoyu</au><au>Shi, Jiwei</au><au>Zheng, Yi</au><au>Lu, Ying-Rui</au><au>He, Qian</au><au>Chen, Jingsheng</au><au>Novoselov, Kostya S.</au><au>Chuang, Cheng-Hao</au><au>Xi, Shibo</au><au>Luo, Xin</au><au>Lu, Jiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferromagnetic single-atom spin catalyst for boosting water splitting</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>18</volume><issue>7</issue><spage>763</spage><epage>771</epage><pages>763-771</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Heterogeneous single-atom spin catalysts combined with magnetic fields provide a powerful means for accelerating chemical reactions with enhanced metal utilization and reaction efficiency. However, designing these catalysts remains challenging due to the need for a high density of atomically dispersed active sites with a short-range quantum spin exchange interaction and long-range ferromagnetic ordering. Here, we devised a scalable hydrothermal approach involving an operando acidic environment for synthesizing various single-atom spin catalysts with widely tunable substitutional magnetic atoms (M
1
) in a MoS
2
host. Among all the M
1
/MoS
2
species, Ni
1
/MoS
2
adopts a distorted tetragonal structure that prompts both ferromagnetic coupling to nearby S atoms as well as adjacent Ni
1
sites, resulting in global room-temperature ferromagnetism. Such coupling benefits spin-selective charge transfer in oxygen evolution reactions to produce triplet O
2
. Furthermore, a mild magnetic field of ~0.5 T enhances the oxygen evolution reaction magnetocurrent by ~2,880% over Ni
1
/MoS
2
, leading to excellent activity and stability in both seawater and pure water splitting cells. As supported by operando characterizations and theoretical calculations, a great magnetic-field-enhanced oxygen evolution reaction performance over Ni
1
/MoS
2
is attributed to a field-induced spin alignment and spin density optimization over S active sites arising from field-regulated S(
p
)–Ni(
d)
hybridization, which in turn optimizes the adsorption energies for radical intermediates to reduce overall reaction barriers.
A versatile hydrothermal approach in an operando acidic environment created ferromagnetic single-atom spin catalysts (SASCs). Ni-based SASC exhibits a giant magnetic field enhancement of OER activity, boosting both water and saline water electrolysis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37231143</pmid><doi>10.1038/s41565-023-01407-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3690-8235</orcidid><orcidid>https://orcid.org/0000-0002-8521-3237</orcidid><orcidid>https://orcid.org/0000-0003-3188-2803</orcidid><orcidid>https://orcid.org/0000-0001-7453-7060</orcidid><orcidid>https://orcid.org/0000-0002-7582-0674</orcidid><orcidid>https://orcid.org/0000-0002-6002-5627</orcidid><orcidid>https://orcid.org/0000-0002-7631-9769</orcidid><orcidid>https://orcid.org/0000-0002-7997-3934</orcidid><orcidid>https://orcid.org/0000-0002-5627-4153</orcidid><orcidid>https://orcid.org/0000-0002-9487-1151</orcidid><orcidid>https://orcid.org/0000-0001-8161-1521</orcidid><orcidid>https://orcid.org/0000-0003-4891-3581</orcidid><orcidid>https://orcid.org/0000-0003-4972-5371</orcidid><orcidid>https://orcid.org/0000-0002-7080-0180</orcidid><orcidid>https://orcid.org/0000-0003-3625-9324</orcidid><orcidid>https://orcid.org/0009-0004-5709-9520</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2023-07, Vol.18 (7), p.763-771 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_2820025151 |
source | SpringerLink Journals; Nature |
subjects | 639/301/299/886 639/638/161/886 Catalysts Charge transfer Chemical reactions Chemical synthesis Chemistry and Materials Science Coupling Density Electrolysis Electrolytic cells Electrons Evolution Ferromagnetism Hybridization Intermediates Magnetic fields Materials Science Molybdenum disulfide Nanotechnology Nanotechnology and Microengineering Optimization Oxygen Oxygen evolution reactions Room temperature Saline water Seawater Spin exchange Water splitting |
title | Ferromagnetic single-atom spin catalyst for boosting water splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferromagnetic%20single-atom%20spin%20catalyst%20for%20boosting%20water%20splitting&rft.jtitle=Nature%20nanotechnology&rft.au=Sun,%20Tao&rft.date=2023-07-01&rft.volume=18&rft.issue=7&rft.spage=763&rft.epage=771&rft.pages=763-771&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-023-01407-1&rft_dat=%3Cproquest_cross%3E2820025151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2840092537&rft_id=info:pmid/37231143&rfr_iscdi=true |