High proton-conducting Nafion/calcium hydroxyphosphate composite membranes for fuel cells

High proton conducting Nafion/calcium hydroxyphosphate (CHP) composite membranes were prepared through homogeneous dispersive mixing and solvent casting method for fuel cell applications. The fabricated membranes were characterized by wide-angle X-ray diffraction (WAXD), Fourier-transform infrared s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2004-11, Vol.50 (2), p.595-599
Hauptverfasser: Park, Y.S., Hatae, T., Itoh, H., Jang, M.Y., Yamazaki, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 599
container_issue 2
container_start_page 595
container_title Electrochimica acta
container_volume 50
creator Park, Y.S.
Hatae, T.
Itoh, H.
Jang, M.Y.
Yamazaki, Y.
description High proton conducting Nafion/calcium hydroxyphosphate (CHP) composite membranes were prepared through homogeneous dispersive mixing and solvent casting method for fuel cell applications. The fabricated membranes were characterized by wide-angle X-ray diffraction (WAXD), Fourier-transform infrared spectrum (FT-IR), and focused ion beam (FIB). The crystallinity calculated by Gaussian peak deconvolution technique increases as the CHP increases in composite membranes. It is likely that the incorporated CHP fine particle forms a new crystalline area in the amorphous region or even crystalline region, which means the CHP plays a role in a kind of nucleating agent for Nafion. In the FT-IR study, it was found that the absorbance of OH − bending peak at 1673 cm −1 decreases as the number of scan increases. In the FIB pictures, three-dimensional holes or channels were shown. In the study of proton conductivity, that of composite membrane is higher than that in cast Nafion. Consequently, we may conclude that the incorporated CHP particles influence the crystalline kinetics and structure modification for cast Nafion, resulting in the increase of conductivity in Nafion/CHP composite membranes.
doi_str_mv 10.1016/j.electacta.2003.12.073
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28199752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468604007285</els_id><sourcerecordid>28199752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-8f81da742a885b245c61f217bc36c2f3dc8f051b0c6cc88e65121c8c147262eb3</originalsourceid><addsrcrecordid>eNqFkE9P3DAQxa2KSl1oP0NzaW8JHjv-s0eEClRC9NIeerKcic16lcSpnSD22-PVonJEGmnm8GbmvR8hX4E2QEFe7hs3OFxsqYZRyhtgDVX8A9mAVrzmWmzPyIZS4HUrtfxEznPeU0qVVHRD_t6Fx101p7jEqcY49SsuYXqsHqwPcbpEO2BYx2p36FN8Psy7mOedXVyFcZxjDmUa3dglO7lc-Zgqv7qhQjcM-TP56O2Q3ZfXfkH-3Pz4fX1X3_-6_Xl9dV8jV-1Sa6-ht6plVmvRsVagBM9AdcglMs971J4K6ChKRK2dFMAANUKrmGSu4xfk--luCfFvdXkxY8hHB8VTXLNhGrZbJVgRqpMQU8w5OW_mFEabDgaoOaI0e_MfpTmiNMBMQVk2v72-sLkQ8SUuhvy2LpnYghBFd3XSuZL3KbhkMgY3oetDKndNH8O7v14Ak3OPvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28199752</pqid></control><display><type>article</type><title>High proton-conducting Nafion/calcium hydroxyphosphate composite membranes for fuel cells</title><source>Elsevier ScienceDirect Journals</source><creator>Park, Y.S. ; Hatae, T. ; Itoh, H. ; Jang, M.Y. ; Yamazaki, Y.</creator><creatorcontrib>Park, Y.S. ; Hatae, T. ; Itoh, H. ; Jang, M.Y. ; Yamazaki, Y.</creatorcontrib><description>High proton conducting Nafion/calcium hydroxyphosphate (CHP) composite membranes were prepared through homogeneous dispersive mixing and solvent casting method for fuel cell applications. The fabricated membranes were characterized by wide-angle X-ray diffraction (WAXD), Fourier-transform infrared spectrum (FT-IR), and focused ion beam (FIB). The crystallinity calculated by Gaussian peak deconvolution technique increases as the CHP increases in composite membranes. It is likely that the incorporated CHP fine particle forms a new crystalline area in the amorphous region or even crystalline region, which means the CHP plays a role in a kind of nucleating agent for Nafion. In the FT-IR study, it was found that the absorbance of OH − bending peak at 1673 cm −1 decreases as the number of scan increases. In the FIB pictures, three-dimensional holes or channels were shown. In the study of proton conductivity, that of composite membrane is higher than that in cast Nafion. Consequently, we may conclude that the incorporated CHP particles influence the crystalline kinetics and structure modification for cast Nafion, resulting in the increase of conductivity in Nafion/CHP composite membranes.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2003.12.073</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Calcium hydroxy phosphate ; Chemistry ; Composite ; Conductivity ; Corrosion ; Corrosion mechanisms ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemistry ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; FIB ; FT-IR ; Fuel cell ; Fuel cells ; General and physical chemistry ; Metals. Metallurgy ; Nafion</subject><ispartof>Electrochimica acta, 2004-11, Vol.50 (2), p.595-599</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-8f81da742a885b245c61f217bc36c2f3dc8f051b0c6cc88e65121c8c147262eb3</citedby><cites>FETCH-LOGICAL-c374t-8f81da742a885b245c61f217bc36c2f3dc8f051b0c6cc88e65121c8c147262eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468604007285$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16259155$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Y.S.</creatorcontrib><creatorcontrib>Hatae, T.</creatorcontrib><creatorcontrib>Itoh, H.</creatorcontrib><creatorcontrib>Jang, M.Y.</creatorcontrib><creatorcontrib>Yamazaki, Y.</creatorcontrib><title>High proton-conducting Nafion/calcium hydroxyphosphate composite membranes for fuel cells</title><title>Electrochimica acta</title><description>High proton conducting Nafion/calcium hydroxyphosphate (CHP) composite membranes were prepared through homogeneous dispersive mixing and solvent casting method for fuel cell applications. The fabricated membranes were characterized by wide-angle X-ray diffraction (WAXD), Fourier-transform infrared spectrum (FT-IR), and focused ion beam (FIB). The crystallinity calculated by Gaussian peak deconvolution technique increases as the CHP increases in composite membranes. It is likely that the incorporated CHP fine particle forms a new crystalline area in the amorphous region or even crystalline region, which means the CHP plays a role in a kind of nucleating agent for Nafion. In the FT-IR study, it was found that the absorbance of OH − bending peak at 1673 cm −1 decreases as the number of scan increases. In the FIB pictures, three-dimensional holes or channels were shown. In the study of proton conductivity, that of composite membrane is higher than that in cast Nafion. Consequently, we may conclude that the incorporated CHP particles influence the crystalline kinetics and structure modification for cast Nafion, resulting in the increase of conductivity in Nafion/CHP composite membranes.</description><subject>Applied sciences</subject><subject>Calcium hydroxy phosphate</subject><subject>Chemistry</subject><subject>Composite</subject><subject>Conductivity</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemistry</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>FIB</subject><subject>FT-IR</subject><subject>Fuel cell</subject><subject>Fuel cells</subject><subject>General and physical chemistry</subject><subject>Metals. Metallurgy</subject><subject>Nafion</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE9P3DAQxa2KSl1oP0NzaW8JHjv-s0eEClRC9NIeerKcic16lcSpnSD22-PVonJEGmnm8GbmvR8hX4E2QEFe7hs3OFxsqYZRyhtgDVX8A9mAVrzmWmzPyIZS4HUrtfxEznPeU0qVVHRD_t6Fx101p7jEqcY49SsuYXqsHqwPcbpEO2BYx2p36FN8Psy7mOedXVyFcZxjDmUa3dglO7lc-Zgqv7qhQjcM-TP56O2Q3ZfXfkH-3Pz4fX1X3_-6_Xl9dV8jV-1Sa6-ht6plVmvRsVagBM9AdcglMs971J4K6ChKRK2dFMAANUKrmGSu4xfk--luCfFvdXkxY8hHB8VTXLNhGrZbJVgRqpMQU8w5OW_mFEabDgaoOaI0e_MfpTmiNMBMQVk2v72-sLkQ8SUuhvy2LpnYghBFd3XSuZL3KbhkMgY3oetDKndNH8O7v14Ak3OPvA</recordid><startdate>20041130</startdate><enddate>20041130</enddate><creator>Park, Y.S.</creator><creator>Hatae, T.</creator><creator>Itoh, H.</creator><creator>Jang, M.Y.</creator><creator>Yamazaki, Y.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20041130</creationdate><title>High proton-conducting Nafion/calcium hydroxyphosphate composite membranes for fuel cells</title><author>Park, Y.S. ; Hatae, T. ; Itoh, H. ; Jang, M.Y. ; Yamazaki, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-8f81da742a885b245c61f217bc36c2f3dc8f051b0c6cc88e65121c8c147262eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Calcium hydroxy phosphate</topic><topic>Chemistry</topic><topic>Composite</topic><topic>Conductivity</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemistry</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>FIB</topic><topic>FT-IR</topic><topic>Fuel cell</topic><topic>Fuel cells</topic><topic>General and physical chemistry</topic><topic>Metals. Metallurgy</topic><topic>Nafion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Y.S.</creatorcontrib><creatorcontrib>Hatae, T.</creatorcontrib><creatorcontrib>Itoh, H.</creatorcontrib><creatorcontrib>Jang, M.Y.</creatorcontrib><creatorcontrib>Yamazaki, Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Y.S.</au><au>Hatae, T.</au><au>Itoh, H.</au><au>Jang, M.Y.</au><au>Yamazaki, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High proton-conducting Nafion/calcium hydroxyphosphate composite membranes for fuel cells</atitle><jtitle>Electrochimica acta</jtitle><date>2004-11-30</date><risdate>2004</risdate><volume>50</volume><issue>2</issue><spage>595</spage><epage>599</epage><pages>595-599</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>High proton conducting Nafion/calcium hydroxyphosphate (CHP) composite membranes were prepared through homogeneous dispersive mixing and solvent casting method for fuel cell applications. The fabricated membranes were characterized by wide-angle X-ray diffraction (WAXD), Fourier-transform infrared spectrum (FT-IR), and focused ion beam (FIB). The crystallinity calculated by Gaussian peak deconvolution technique increases as the CHP increases in composite membranes. It is likely that the incorporated CHP fine particle forms a new crystalline area in the amorphous region or even crystalline region, which means the CHP plays a role in a kind of nucleating agent for Nafion. In the FT-IR study, it was found that the absorbance of OH − bending peak at 1673 cm −1 decreases as the number of scan increases. In the FIB pictures, three-dimensional holes or channels were shown. In the study of proton conductivity, that of composite membrane is higher than that in cast Nafion. Consequently, we may conclude that the incorporated CHP particles influence the crystalline kinetics and structure modification for cast Nafion, resulting in the increase of conductivity in Nafion/CHP composite membranes.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2003.12.073</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2004-11, Vol.50 (2), p.595-599
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_miscellaneous_28199752
source Elsevier ScienceDirect Journals
subjects Applied sciences
Calcium hydroxy phosphate
Chemistry
Composite
Conductivity
Corrosion
Corrosion mechanisms
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrochemistry
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
FIB
FT-IR
Fuel cell
Fuel cells
General and physical chemistry
Metals. Metallurgy
Nafion
title High proton-conducting Nafion/calcium hydroxyphosphate composite membranes for fuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T16%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20proton-conducting%20Nafion/calcium%20hydroxyphosphate%20composite%20membranes%20for%20fuel%20cells&rft.jtitle=Electrochimica%20acta&rft.au=Park,%20Y.S.&rft.date=2004-11-30&rft.volume=50&rft.issue=2&rft.spage=595&rft.epage=599&rft.pages=595-599&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2003.12.073&rft_dat=%3Cproquest_cross%3E28199752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28199752&rft_id=info:pmid/&rft_els_id=S0013468604007285&rfr_iscdi=true