High proton-conducting Nafion/calcium hydroxyphosphate composite membranes for fuel cells
High proton conducting Nafion/calcium hydroxyphosphate (CHP) composite membranes were prepared through homogeneous dispersive mixing and solvent casting method for fuel cell applications. The fabricated membranes were characterized by wide-angle X-ray diffraction (WAXD), Fourier-transform infrared s...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2004-11, Vol.50 (2), p.595-599 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 599 |
---|---|
container_issue | 2 |
container_start_page | 595 |
container_title | Electrochimica acta |
container_volume | 50 |
creator | Park, Y.S. Hatae, T. Itoh, H. Jang, M.Y. Yamazaki, Y. |
description | High proton conducting Nafion/calcium hydroxyphosphate (CHP) composite membranes were prepared through homogeneous dispersive mixing and solvent casting method for fuel cell applications. The fabricated membranes were characterized by wide-angle X-ray diffraction (WAXD), Fourier-transform infrared spectrum (FT-IR), and focused ion beam (FIB). The crystallinity calculated by Gaussian peak deconvolution technique increases as the CHP increases in composite membranes. It is likely that the incorporated CHP fine particle forms a new crystalline area in the amorphous region or even crystalline region, which means the CHP plays a role in a kind of nucleating agent for Nafion. In the FT-IR study, it was found that the absorbance of OH
− bending peak at 1673
cm
−1 decreases as the number of scan increases. In the FIB pictures, three-dimensional holes or channels were shown. In the study of proton conductivity, that of composite membrane is higher than that in cast Nafion. Consequently, we may conclude that the incorporated CHP particles influence the crystalline kinetics and structure modification for cast Nafion, resulting in the increase of conductivity in Nafion/CHP composite membranes. |
doi_str_mv | 10.1016/j.electacta.2003.12.073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28199752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468604007285</els_id><sourcerecordid>28199752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-8f81da742a885b245c61f217bc36c2f3dc8f051b0c6cc88e65121c8c147262eb3</originalsourceid><addsrcrecordid>eNqFkE9P3DAQxa2KSl1oP0NzaW8JHjv-s0eEClRC9NIeerKcic16lcSpnSD22-PVonJEGmnm8GbmvR8hX4E2QEFe7hs3OFxsqYZRyhtgDVX8A9mAVrzmWmzPyIZS4HUrtfxEznPeU0qVVHRD_t6Fx101p7jEqcY49SsuYXqsHqwPcbpEO2BYx2p36FN8Psy7mOedXVyFcZxjDmUa3dglO7lc-Zgqv7qhQjcM-TP56O2Q3ZfXfkH-3Pz4fX1X3_-6_Xl9dV8jV-1Sa6-ht6plVmvRsVagBM9AdcglMs971J4K6ChKRK2dFMAANUKrmGSu4xfk--luCfFvdXkxY8hHB8VTXLNhGrZbJVgRqpMQU8w5OW_mFEabDgaoOaI0e_MfpTmiNMBMQVk2v72-sLkQ8SUuhvy2LpnYghBFd3XSuZL3KbhkMgY3oetDKndNH8O7v14Ak3OPvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28199752</pqid></control><display><type>article</type><title>High proton-conducting Nafion/calcium hydroxyphosphate composite membranes for fuel cells</title><source>Elsevier ScienceDirect Journals</source><creator>Park, Y.S. ; Hatae, T. ; Itoh, H. ; Jang, M.Y. ; Yamazaki, Y.</creator><creatorcontrib>Park, Y.S. ; Hatae, T. ; Itoh, H. ; Jang, M.Y. ; Yamazaki, Y.</creatorcontrib><description>High proton conducting Nafion/calcium hydroxyphosphate (CHP) composite membranes were prepared through homogeneous dispersive mixing and solvent casting method for fuel cell applications. The fabricated membranes were characterized by wide-angle X-ray diffraction (WAXD), Fourier-transform infrared spectrum (FT-IR), and focused ion beam (FIB). The crystallinity calculated by Gaussian peak deconvolution technique increases as the CHP increases in composite membranes. It is likely that the incorporated CHP fine particle forms a new crystalline area in the amorphous region or even crystalline region, which means the CHP plays a role in a kind of nucleating agent for Nafion. In the FT-IR study, it was found that the absorbance of OH
− bending peak at 1673
cm
−1 decreases as the number of scan increases. In the FIB pictures, three-dimensional holes or channels were shown. In the study of proton conductivity, that of composite membrane is higher than that in cast Nafion. Consequently, we may conclude that the incorporated CHP particles influence the crystalline kinetics and structure modification for cast Nafion, resulting in the increase of conductivity in Nafion/CHP composite membranes.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2003.12.073</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Calcium hydroxy phosphate ; Chemistry ; Composite ; Conductivity ; Corrosion ; Corrosion mechanisms ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemistry ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; FIB ; FT-IR ; Fuel cell ; Fuel cells ; General and physical chemistry ; Metals. Metallurgy ; Nafion</subject><ispartof>Electrochimica acta, 2004-11, Vol.50 (2), p.595-599</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-8f81da742a885b245c61f217bc36c2f3dc8f051b0c6cc88e65121c8c147262eb3</citedby><cites>FETCH-LOGICAL-c374t-8f81da742a885b245c61f217bc36c2f3dc8f051b0c6cc88e65121c8c147262eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468604007285$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16259155$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Y.S.</creatorcontrib><creatorcontrib>Hatae, T.</creatorcontrib><creatorcontrib>Itoh, H.</creatorcontrib><creatorcontrib>Jang, M.Y.</creatorcontrib><creatorcontrib>Yamazaki, Y.</creatorcontrib><title>High proton-conducting Nafion/calcium hydroxyphosphate composite membranes for fuel cells</title><title>Electrochimica acta</title><description>High proton conducting Nafion/calcium hydroxyphosphate (CHP) composite membranes were prepared through homogeneous dispersive mixing and solvent casting method for fuel cell applications. The fabricated membranes were characterized by wide-angle X-ray diffraction (WAXD), Fourier-transform infrared spectrum (FT-IR), and focused ion beam (FIB). The crystallinity calculated by Gaussian peak deconvolution technique increases as the CHP increases in composite membranes. It is likely that the incorporated CHP fine particle forms a new crystalline area in the amorphous region or even crystalline region, which means the CHP plays a role in a kind of nucleating agent for Nafion. In the FT-IR study, it was found that the absorbance of OH
− bending peak at 1673
cm
−1 decreases as the number of scan increases. In the FIB pictures, three-dimensional holes or channels were shown. In the study of proton conductivity, that of composite membrane is higher than that in cast Nafion. Consequently, we may conclude that the incorporated CHP particles influence the crystalline kinetics and structure modification for cast Nafion, resulting in the increase of conductivity in Nafion/CHP composite membranes.</description><subject>Applied sciences</subject><subject>Calcium hydroxy phosphate</subject><subject>Chemistry</subject><subject>Composite</subject><subject>Conductivity</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemistry</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>FIB</subject><subject>FT-IR</subject><subject>Fuel cell</subject><subject>Fuel cells</subject><subject>General and physical chemistry</subject><subject>Metals. Metallurgy</subject><subject>Nafion</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE9P3DAQxa2KSl1oP0NzaW8JHjv-s0eEClRC9NIeerKcic16lcSpnSD22-PVonJEGmnm8GbmvR8hX4E2QEFe7hs3OFxsqYZRyhtgDVX8A9mAVrzmWmzPyIZS4HUrtfxEznPeU0qVVHRD_t6Fx101p7jEqcY49SsuYXqsHqwPcbpEO2BYx2p36FN8Psy7mOedXVyFcZxjDmUa3dglO7lc-Zgqv7qhQjcM-TP56O2Q3ZfXfkH-3Pz4fX1X3_-6_Xl9dV8jV-1Sa6-ht6plVmvRsVagBM9AdcglMs971J4K6ChKRK2dFMAANUKrmGSu4xfk--luCfFvdXkxY8hHB8VTXLNhGrZbJVgRqpMQU8w5OW_mFEabDgaoOaI0e_MfpTmiNMBMQVk2v72-sLkQ8SUuhvy2LpnYghBFd3XSuZL3KbhkMgY3oetDKndNH8O7v14Ak3OPvA</recordid><startdate>20041130</startdate><enddate>20041130</enddate><creator>Park, Y.S.</creator><creator>Hatae, T.</creator><creator>Itoh, H.</creator><creator>Jang, M.Y.</creator><creator>Yamazaki, Y.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20041130</creationdate><title>High proton-conducting Nafion/calcium hydroxyphosphate composite membranes for fuel cells</title><author>Park, Y.S. ; Hatae, T. ; Itoh, H. ; Jang, M.Y. ; Yamazaki, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-8f81da742a885b245c61f217bc36c2f3dc8f051b0c6cc88e65121c8c147262eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Calcium hydroxy phosphate</topic><topic>Chemistry</topic><topic>Composite</topic><topic>Conductivity</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemistry</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>FIB</topic><topic>FT-IR</topic><topic>Fuel cell</topic><topic>Fuel cells</topic><topic>General and physical chemistry</topic><topic>Metals. Metallurgy</topic><topic>Nafion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Y.S.</creatorcontrib><creatorcontrib>Hatae, T.</creatorcontrib><creatorcontrib>Itoh, H.</creatorcontrib><creatorcontrib>Jang, M.Y.</creatorcontrib><creatorcontrib>Yamazaki, Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Y.S.</au><au>Hatae, T.</au><au>Itoh, H.</au><au>Jang, M.Y.</au><au>Yamazaki, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High proton-conducting Nafion/calcium hydroxyphosphate composite membranes for fuel cells</atitle><jtitle>Electrochimica acta</jtitle><date>2004-11-30</date><risdate>2004</risdate><volume>50</volume><issue>2</issue><spage>595</spage><epage>599</epage><pages>595-599</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>High proton conducting Nafion/calcium hydroxyphosphate (CHP) composite membranes were prepared through homogeneous dispersive mixing and solvent casting method for fuel cell applications. The fabricated membranes were characterized by wide-angle X-ray diffraction (WAXD), Fourier-transform infrared spectrum (FT-IR), and focused ion beam (FIB). The crystallinity calculated by Gaussian peak deconvolution technique increases as the CHP increases in composite membranes. It is likely that the incorporated CHP fine particle forms a new crystalline area in the amorphous region or even crystalline region, which means the CHP plays a role in a kind of nucleating agent for Nafion. In the FT-IR study, it was found that the absorbance of OH
− bending peak at 1673
cm
−1 decreases as the number of scan increases. In the FIB pictures, three-dimensional holes or channels were shown. In the study of proton conductivity, that of composite membrane is higher than that in cast Nafion. Consequently, we may conclude that the incorporated CHP particles influence the crystalline kinetics and structure modification for cast Nafion, resulting in the increase of conductivity in Nafion/CHP composite membranes.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2003.12.073</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2004-11, Vol.50 (2), p.595-599 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_miscellaneous_28199752 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Calcium hydroxy phosphate Chemistry Composite Conductivity Corrosion Corrosion mechanisms Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrochemistry Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology FIB FT-IR Fuel cell Fuel cells General and physical chemistry Metals. Metallurgy Nafion |
title | High proton-conducting Nafion/calcium hydroxyphosphate composite membranes for fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T16%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20proton-conducting%20Nafion/calcium%20hydroxyphosphate%20composite%20membranes%20for%20fuel%20cells&rft.jtitle=Electrochimica%20acta&rft.au=Park,%20Y.S.&rft.date=2004-11-30&rft.volume=50&rft.issue=2&rft.spage=595&rft.epage=599&rft.pages=595-599&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2003.12.073&rft_dat=%3Cproquest_cross%3E28199752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28199752&rft_id=info:pmid/&rft_els_id=S0013468604007285&rfr_iscdi=true |