Overview and status of metal S/D Schottky-barrier MOSFET technology
In this paper, the metal source/drain (S/D) Schottky-barrier (SB) MOSFET technology is reviewed. The technology offers several benefits that enable scaling to sub-30-nm gate lengths including extremely low parasitic S/D resistance (1% of the total device resistance), atomically abrupt junctions that...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2006-05, Vol.53 (5), p.1048-1058 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1058 |
---|---|
container_issue | 5 |
container_start_page | 1048 |
container_title | IEEE transactions on electron devices |
container_volume | 53 |
creator | Larson, J.M. Snyder, J.P. |
description | In this paper, the metal source/drain (S/D) Schottky-barrier (SB) MOSFET technology is reviewed. The technology offers several benefits that enable scaling to sub-30-nm gate lengths including extremely low parasitic S/D resistance (1% of the total device resistance), atomically abrupt junctions that enable the physical scaling of the device to sub-10-nm gate lengths, superior control of OFF-state leakage current due to the intrinsic Schottky potential barrier, and elimination of parasitic bipolar action. These and other benefits accrue using a low-thermal-budget CMOS manufacturing process requiring two fewer masks than conventional bulk CMOS. The SB-CMOS manufacturing process enables integration of critical new materials such as high-k gate insulators and strained silicon substrates. SB MOSFET technology state of the art is also reviewed, and shown to be focused on barrier-height-lowering techniques that use interfacial layers between the metal S/Ds and the channel region. SB-PMOS devices tend to have superior performance compared to NMOS, but NMOS performance has recently improved by using ytterbium silicide or by using hybrid structures that incorporate interfacial layers to lower the SB height. |
doi_str_mv | 10.1109/TED.2006.871842 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28198214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1624684</ieee_id><sourcerecordid>889389753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-87b3dcfcced589b073b0f3b9cf21eb397d412c8d2f74e2b1adb03b9966bbafc63</originalsourceid><addsrcrecordid>eNqN0UtLAzEQB_AgCtbq2YOXRVBP2-a1eRylrQ9Qemg9hySb6Op2tybbSr-9KS0IHsRTCPObgZk_AOcIDhCCcjifjAcYQjYQHAmKD0APFQXPJaPsEPQgRCKXRJBjcBLje_oySnEPjKZrF9aV-8p0U2ax090qZq3PFq7TdTYbjrOZfWu77mOTGx1C5UL2PJ3dTeZZ5-xb09bt6-YUHHldR3e2f_vgJYHRQ_40vX8c3T7lliLc5YIbUlpvrSsLIQ3kxEBPjLQeI2eI5GViVpTYc-qwQbo0MJUlY8Zobxnpg5vd3GVoP1cudmpRRevqWjeuXUUlRFpQ8oIkef2nxAJJgRH9DyQsnSrBy1_wvV2FJq2rBCsQY0UhExrukA1tjMF5tQzVQoeNQlBtQ1IpJLUNSe1CSh1X-7E6Wl37oBtbxZ82zqnEaOsudq5yzv2UGaZMUPIN0xOY6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865166559</pqid></control><display><type>article</type><title>Overview and status of metal S/D Schottky-barrier MOSFET technology</title><source>IEEE Electronic Library (IEL)</source><creator>Larson, J.M. ; Snyder, J.P.</creator><creatorcontrib>Larson, J.M. ; Snyder, J.P.</creatorcontrib><description>In this paper, the metal source/drain (S/D) Schottky-barrier (SB) MOSFET technology is reviewed. The technology offers several benefits that enable scaling to sub-30-nm gate lengths including extremely low parasitic S/D resistance (1% of the total device resistance), atomically abrupt junctions that enable the physical scaling of the device to sub-10-nm gate lengths, superior control of OFF-state leakage current due to the intrinsic Schottky potential barrier, and elimination of parasitic bipolar action. These and other benefits accrue using a low-thermal-budget CMOS manufacturing process requiring two fewer masks than conventional bulk CMOS. The SB-CMOS manufacturing process enables integration of critical new materials such as high-k gate insulators and strained silicon substrates. SB MOSFET technology state of the art is also reviewed, and shown to be focused on barrier-height-lowering techniques that use interfacial layers between the metal S/Ds and the channel region. SB-PMOS devices tend to have superior performance compared to NMOS, but NMOS performance has recently improved by using ytterbium silicide or by using hybrid structures that incorporate interfacial layers to lower the SB height.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2006.871842</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Antimony ; Applied sciences ; Channels ; CMOS ; CMOSFETs ; Design. Technologies. Operation analysis. Testing ; Devices ; Electronics ; Erbium compounds ; erbium silicide ; Exact sciences and technology ; Gates ; Hybrid structures ; Integrated circuits ; metal source/drain (S/D) ; MOSFETs ; platinum silicide ; Schottky barriers ; Schottky barriers (SBs) ; Semiconductor device manufacture ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; short-channel MOSFET ; Silicon ; Transistors ; Ytterbium ; Ytterbium compounds</subject><ispartof>IEEE transactions on electron devices, 2006-05, Vol.53 (5), p.1048-1058</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-87b3dcfcced589b073b0f3b9cf21eb397d412c8d2f74e2b1adb03b9966bbafc63</citedby><cites>FETCH-LOGICAL-c412t-87b3dcfcced589b073b0f3b9cf21eb397d412c8d2f74e2b1adb03b9966bbafc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1624684$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1624684$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17749212$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Larson, J.M.</creatorcontrib><creatorcontrib>Snyder, J.P.</creatorcontrib><title>Overview and status of metal S/D Schottky-barrier MOSFET technology</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this paper, the metal source/drain (S/D) Schottky-barrier (SB) MOSFET technology is reviewed. The technology offers several benefits that enable scaling to sub-30-nm gate lengths including extremely low parasitic S/D resistance (1% of the total device resistance), atomically abrupt junctions that enable the physical scaling of the device to sub-10-nm gate lengths, superior control of OFF-state leakage current due to the intrinsic Schottky potential barrier, and elimination of parasitic bipolar action. These and other benefits accrue using a low-thermal-budget CMOS manufacturing process requiring two fewer masks than conventional bulk CMOS. The SB-CMOS manufacturing process enables integration of critical new materials such as high-k gate insulators and strained silicon substrates. SB MOSFET technology state of the art is also reviewed, and shown to be focused on barrier-height-lowering techniques that use interfacial layers between the metal S/Ds and the channel region. SB-PMOS devices tend to have superior performance compared to NMOS, but NMOS performance has recently improved by using ytterbium silicide or by using hybrid structures that incorporate interfacial layers to lower the SB height.</description><subject>Antimony</subject><subject>Applied sciences</subject><subject>Channels</subject><subject>CMOS</subject><subject>CMOSFETs</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Electronics</subject><subject>Erbium compounds</subject><subject>erbium silicide</subject><subject>Exact sciences and technology</subject><subject>Gates</subject><subject>Hybrid structures</subject><subject>Integrated circuits</subject><subject>metal source/drain (S/D)</subject><subject>MOSFETs</subject><subject>platinum silicide</subject><subject>Schottky barriers</subject><subject>Schottky barriers (SBs)</subject><subject>Semiconductor device manufacture</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>short-channel MOSFET</subject><subject>Silicon</subject><subject>Transistors</subject><subject>Ytterbium</subject><subject>Ytterbium compounds</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0UtLAzEQB_AgCtbq2YOXRVBP2-a1eRylrQ9Qemg9hySb6Op2tybbSr-9KS0IHsRTCPObgZk_AOcIDhCCcjifjAcYQjYQHAmKD0APFQXPJaPsEPQgRCKXRJBjcBLje_oySnEPjKZrF9aV-8p0U2ax090qZq3PFq7TdTYbjrOZfWu77mOTGx1C5UL2PJ3dTeZZ5-xb09bt6-YUHHldR3e2f_vgJYHRQ_40vX8c3T7lliLc5YIbUlpvrSsLIQ3kxEBPjLQeI2eI5GViVpTYc-qwQbo0MJUlY8Zobxnpg5vd3GVoP1cudmpRRevqWjeuXUUlRFpQ8oIkef2nxAJJgRH9DyQsnSrBy1_wvV2FJq2rBCsQY0UhExrukA1tjMF5tQzVQoeNQlBtQ1IpJLUNSe1CSh1X-7E6Wl37oBtbxZ82zqnEaOsudq5yzv2UGaZMUPIN0xOY6A</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Larson, J.M.</creator><creator>Snyder, J.P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>8BQ</scope><scope>JG9</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20060501</creationdate><title>Overview and status of metal S/D Schottky-barrier MOSFET technology</title><author>Larson, J.M. ; Snyder, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-87b3dcfcced589b073b0f3b9cf21eb397d412c8d2f74e2b1adb03b9966bbafc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Antimony</topic><topic>Applied sciences</topic><topic>Channels</topic><topic>CMOS</topic><topic>CMOSFETs</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Electronics</topic><topic>Erbium compounds</topic><topic>erbium silicide</topic><topic>Exact sciences and technology</topic><topic>Gates</topic><topic>Hybrid structures</topic><topic>Integrated circuits</topic><topic>metal source/drain (S/D)</topic><topic>MOSFETs</topic><topic>platinum silicide</topic><topic>Schottky barriers</topic><topic>Schottky barriers (SBs)</topic><topic>Semiconductor device manufacture</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>short-channel MOSFET</topic><topic>Silicon</topic><topic>Transistors</topic><topic>Ytterbium</topic><topic>Ytterbium compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larson, J.M.</creatorcontrib><creatorcontrib>Snyder, J.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Larson, J.M.</au><au>Snyder, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overview and status of metal S/D Schottky-barrier MOSFET technology</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2006-05-01</date><risdate>2006</risdate><volume>53</volume><issue>5</issue><spage>1048</spage><epage>1058</epage><pages>1048-1058</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this paper, the metal source/drain (S/D) Schottky-barrier (SB) MOSFET technology is reviewed. The technology offers several benefits that enable scaling to sub-30-nm gate lengths including extremely low parasitic S/D resistance (1% of the total device resistance), atomically abrupt junctions that enable the physical scaling of the device to sub-10-nm gate lengths, superior control of OFF-state leakage current due to the intrinsic Schottky potential barrier, and elimination of parasitic bipolar action. These and other benefits accrue using a low-thermal-budget CMOS manufacturing process requiring two fewer masks than conventional bulk CMOS. The SB-CMOS manufacturing process enables integration of critical new materials such as high-k gate insulators and strained silicon substrates. SB MOSFET technology state of the art is also reviewed, and shown to be focused on barrier-height-lowering techniques that use interfacial layers between the metal S/Ds and the channel region. SB-PMOS devices tend to have superior performance compared to NMOS, but NMOS performance has recently improved by using ytterbium silicide or by using hybrid structures that incorporate interfacial layers to lower the SB height.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2006.871842</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2006-05, Vol.53 (5), p.1048-1058 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_miscellaneous_28198214 |
source | IEEE Electronic Library (IEL) |
subjects | Antimony Applied sciences Channels CMOS CMOSFETs Design. Technologies. Operation analysis. Testing Devices Electronics Erbium compounds erbium silicide Exact sciences and technology Gates Hybrid structures Integrated circuits metal source/drain (S/D) MOSFETs platinum silicide Schottky barriers Schottky barriers (SBs) Semiconductor device manufacture Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices short-channel MOSFET Silicon Transistors Ytterbium Ytterbium compounds |
title | Overview and status of metal S/D Schottky-barrier MOSFET technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overview%20and%20status%20of%20metal%20S/D%20Schottky-barrier%20MOSFET%20technology&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Larson,%20J.M.&rft.date=2006-05-01&rft.volume=53&rft.issue=5&rft.spage=1048&rft.epage=1058&rft.pages=1048-1058&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2006.871842&rft_dat=%3Cproquest_RIE%3E889389753%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865166559&rft_id=info:pmid/&rft_ieee_id=1624684&rfr_iscdi=true |