A generalized Numerov method for linear second-order differential equations involving a first derivative term

The Numerov method for linear second-order differential equations is generalized to include equations containing a first derivative term. The method presented has the same degree of accuracy as the conventional Numerov method. The accuracy of the method is analysed in a limiting case and in the fram...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2004-09, Vol.170 (1), p.103-120
1. Verfasser: Tselyaev, V.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120
container_issue 1
container_start_page 103
container_title Journal of computational and applied mathematics
container_volume 170
creator Tselyaev, V.I.
description The Numerov method for linear second-order differential equations is generalized to include equations containing a first derivative term. The method presented has the same degree of accuracy as the conventional Numerov method. The accuracy of the method is analysed in a limiting case and in the framework of the numerical experiment in comparison with the Runge–Kutta method and with another modifications of the Numerov method. A general scheme of the application to the numerical solution of the Hartree–Fock equations is considered.
doi_str_mv 10.1016/j.cam.2003.12.042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28192877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042704000159</els_id><sourcerecordid>28192877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-337d8271792f2d04a38683d52dc82452218898a95a87ef67437cd41043da2fa3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFtO3nbNx3aTxVMpfkHRS-8hJJOaspu0Sbqgv94t9exp4J3nHZgHoXtKakpo-7irjR5qRgivKatJwy7QjErRVVQIeYlmhAtRTbG4Rjc57wghbUebGRqWeAsBku79D1j8cRwgxREPUL6ixS4m3PsAOuEMJgZbxWQhYeudgwSheN1jOBx18TFk7MMY-9GHLdbY-ZQLnmA_TtsRcIE03KIrp_sMd39zjjYvz5vVW7X-fH1fLdeV4W1XKs6FlUxQ0THHLGk0l63kdsGskaxZMEal7KTuFloKcK1ouDC2oaThVjOn-Rw9nM_uUzwcIRc1-Gyg73WAeMyKSdoxKcQE0jNoUsw5gVP75AedvhUl6uRV7dTkVZ28KsrUJHDqPJ07MD0wekgqGw_BgPUJTFE2-n_av70sgYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28192877</pqid></control><display><type>article</type><title>A generalized Numerov method for linear second-order differential equations involving a first derivative term</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Tselyaev, V.I.</creator><creatorcontrib>Tselyaev, V.I.</creatorcontrib><description>The Numerov method for linear second-order differential equations is generalized to include equations containing a first derivative term. The method presented has the same degree of accuracy as the conventional Numerov method. The accuracy of the method is analysed in a limiting case and in the framework of the numerical experiment in comparison with the Runge–Kutta method and with another modifications of the Numerov method. A general scheme of the application to the numerical solution of the Hartree–Fock equations is considered.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2003.12.042</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Hartree–Fock calculations ; Numerov method ; Runge–Kutta method</subject><ispartof>Journal of computational and applied mathematics, 2004-09, Vol.170 (1), p.103-120</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-337d8271792f2d04a38683d52dc82452218898a95a87ef67437cd41043da2fa3</citedby><cites>FETCH-LOGICAL-c369t-337d8271792f2d04a38683d52dc82452218898a95a87ef67437cd41043da2fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2003.12.042$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Tselyaev, V.I.</creatorcontrib><title>A generalized Numerov method for linear second-order differential equations involving a first derivative term</title><title>Journal of computational and applied mathematics</title><description>The Numerov method for linear second-order differential equations is generalized to include equations containing a first derivative term. The method presented has the same degree of accuracy as the conventional Numerov method. The accuracy of the method is analysed in a limiting case and in the framework of the numerical experiment in comparison with the Runge–Kutta method and with another modifications of the Numerov method. A general scheme of the application to the numerical solution of the Hartree–Fock equations is considered.</description><subject>Hartree–Fock calculations</subject><subject>Numerov method</subject><subject>Runge–Kutta method</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFtO3nbNx3aTxVMpfkHRS-8hJJOaspu0Sbqgv94t9exp4J3nHZgHoXtKakpo-7irjR5qRgivKatJwy7QjErRVVQIeYlmhAtRTbG4Rjc57wghbUebGRqWeAsBku79D1j8cRwgxREPUL6ixS4m3PsAOuEMJgZbxWQhYeudgwSheN1jOBx18TFk7MMY-9GHLdbY-ZQLnmA_TtsRcIE03KIrp_sMd39zjjYvz5vVW7X-fH1fLdeV4W1XKs6FlUxQ0THHLGk0l63kdsGskaxZMEal7KTuFloKcK1ouDC2oaThVjOn-Rw9nM_uUzwcIRc1-Gyg73WAeMyKSdoxKcQE0jNoUsw5gVP75AedvhUl6uRV7dTkVZ28KsrUJHDqPJ07MD0wekgqGw_BgPUJTFE2-n_av70sgYU</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Tselyaev, V.I.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20040901</creationdate><title>A generalized Numerov method for linear second-order differential equations involving a first derivative term</title><author>Tselyaev, V.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-337d8271792f2d04a38683d52dc82452218898a95a87ef67437cd41043da2fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Hartree–Fock calculations</topic><topic>Numerov method</topic><topic>Runge–Kutta method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tselyaev, V.I.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tselyaev, V.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized Numerov method for linear second-order differential equations involving a first derivative term</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>170</volume><issue>1</issue><spage>103</spage><epage>120</epage><pages>103-120</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>The Numerov method for linear second-order differential equations is generalized to include equations containing a first derivative term. The method presented has the same degree of accuracy as the conventional Numerov method. The accuracy of the method is analysed in a limiting case and in the framework of the numerical experiment in comparison with the Runge–Kutta method and with another modifications of the Numerov method. A general scheme of the application to the numerical solution of the Hartree–Fock equations is considered.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2003.12.042</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2004-09, Vol.170 (1), p.103-120
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_28192877
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects Hartree–Fock calculations
Numerov method
Runge–Kutta method
title A generalized Numerov method for linear second-order differential equations involving a first derivative term
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20Numerov%20method%20for%20linear%20second-order%20differential%20equations%20involving%20a%20first%20derivative%20term&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Tselyaev,%20V.I.&rft.date=2004-09-01&rft.volume=170&rft.issue=1&rft.spage=103&rft.epage=120&rft.pages=103-120&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2003.12.042&rft_dat=%3Cproquest_cross%3E28192877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28192877&rft_id=info:pmid/&rft_els_id=S0377042704000159&rfr_iscdi=true