How to Incorporate Tricuspid Regurgitation in Right Ventricular-Pulmonary Arterial Coupling

Adaptation of the right ventricle (RV) to a progressively increasing afterload is one of the hallmarks of pulmonary arterial hypertension (PAH). Pressure-volume loop analysis provides measures of load-independent RV contractility, i.e. end-systolic elastance, and pulmonary vascular properties, i.e....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physiology (1985) 2023-07, Vol.135 (1), p.53-59
Hauptverfasser: Yoshida, Keimei, Axelsen, Julie Birkmosse, Saku, Keita, Andersen, Asger, de Man, Frances S, Sunagawa, Kenji, Vonk Noordegraaf, Anton, Bogaard, Harm Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 53
container_title Journal of applied physiology (1985)
container_volume 135
creator Yoshida, Keimei
Axelsen, Julie Birkmosse
Saku, Keita
Andersen, Asger
de Man, Frances S
Sunagawa, Kenji
Vonk Noordegraaf, Anton
Bogaard, Harm Jan
description Adaptation of the right ventricle (RV) to a progressively increasing afterload is one of the hallmarks of pulmonary arterial hypertension (PAH). Pressure-volume loop analysis provides measures of load-independent RV contractility, i.e. end-systolic elastance, and pulmonary vascular properties, i.e. effective arterial elastance (E ). However, PAH induced-RV overload potentially results in tricuspid regurgitation (TR). TR makes RV eject to both PA and right atrium; thereby a ratio of RV end-systolic pressure (P ) to RV stroke volume (SV) could not correctly define E . To overcome this limitation, we introduced a two-parallel compliance model, i.e. E =1/(1/E +1/E ), while effective pulmonary arterial elastance (E =P /PASV) represents pulmonary vascular properties, effective tricuspid regurgitant elastance represents TR. We conducted animal experiments to validate this framework. First, we performed SV analysis with a pressure-volume catheter in the RV and a flow probe at the aorta in rats with and without pressure-overloaded RV to determine the effect of inferior vena cava (IVC) occlusion on TR. A discordance between the two techniques was found in rats with pressure-overloaded RV, not in Sham. This discordance diminished after IVC occlusion, suggesting that TR in pressure-overloaded RV was diminished by IVC occlusion. Next, we performed pressure-volume loop analysis in rats with pressure-overloaded RVs, calibrating RV volume by cardiac magnetic resonance. We found that IVC occlusion increased E , suggesting that a reduction of TR increased E . Using the proposed framework, E was indistinguishably to E post-IVC occlusion. We conclude that the proposed framework helps better understanding of the pathophysiology of PAH and associated right heart failure.
doi_str_mv 10.1152/japplphysiol.00081.2023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2819278007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2819278007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-4481380edf70854812918596d236b17a34e1481cbcf091aa019903926992455f3</originalsourceid><addsrcrecordid>eNpdkMFOGzEQQK0KBCnlF4olLlw2zNi7a_sYRVCQIrVCwKWHlbPxBkfOerG9Qvx9nSatEKfRzLwZzTxCLhCmiBW73uhhcMPLe7TeTQFA4pQB41_IJHdZgTXgEZlIUUEhKilOydcYNwBYlhWekFMuGBMo-YT8vvNvNHl637c-DD7oZOhjsO0YB7uiD2Y9hrVNOlnfU9vTB7t-SfTZ9GnHOB2KX6Pb-l6HdzoLyQSrHZ37cXC2X38jx5120Zwf4hl5ur15nN8Vi58_7uezRdHyElNRlhK5BLPqBMgqJ0yhrFS9YrxeotC8NJir7bLtQKHWgEoBV6xWipVV1fEzcrXfOwT_OpqYmq2NrXFO98aPsWESFRMSQGT08hO68WPo83WZYkLJOt-QKbGn2uBjDKZrhmC3-ccGodn5bz76b_76b3b-8-T3w_5xuTWr_3P_hPM_xt6D7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827986708</pqid></control><display><type>article</type><title>How to Incorporate Tricuspid Regurgitation in Right Ventricular-Pulmonary Arterial Coupling</title><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Yoshida, Keimei ; Axelsen, Julie Birkmosse ; Saku, Keita ; Andersen, Asger ; de Man, Frances S ; Sunagawa, Kenji ; Vonk Noordegraaf, Anton ; Bogaard, Harm Jan</creator><creatorcontrib>Yoshida, Keimei ; Axelsen, Julie Birkmosse ; Saku, Keita ; Andersen, Asger ; de Man, Frances S ; Sunagawa, Kenji ; Vonk Noordegraaf, Anton ; Bogaard, Harm Jan</creatorcontrib><description>Adaptation of the right ventricle (RV) to a progressively increasing afterload is one of the hallmarks of pulmonary arterial hypertension (PAH). Pressure-volume loop analysis provides measures of load-independent RV contractility, i.e. end-systolic elastance, and pulmonary vascular properties, i.e. effective arterial elastance (E ). However, PAH induced-RV overload potentially results in tricuspid regurgitation (TR). TR makes RV eject to both PA and right atrium; thereby a ratio of RV end-systolic pressure (P ) to RV stroke volume (SV) could not correctly define E . To overcome this limitation, we introduced a two-parallel compliance model, i.e. E =1/(1/E +1/E ), while effective pulmonary arterial elastance (E =P /PASV) represents pulmonary vascular properties, effective tricuspid regurgitant elastance represents TR. We conducted animal experiments to validate this framework. First, we performed SV analysis with a pressure-volume catheter in the RV and a flow probe at the aorta in rats with and without pressure-overloaded RV to determine the effect of inferior vena cava (IVC) occlusion on TR. A discordance between the two techniques was found in rats with pressure-overloaded RV, not in Sham. This discordance diminished after IVC occlusion, suggesting that TR in pressure-overloaded RV was diminished by IVC occlusion. Next, we performed pressure-volume loop analysis in rats with pressure-overloaded RVs, calibrating RV volume by cardiac magnetic resonance. We found that IVC occlusion increased E , suggesting that a reduction of TR increased E . Using the proposed framework, E was indistinguishably to E post-IVC occlusion. We conclude that the proposed framework helps better understanding of the pathophysiology of PAH and associated right heart failure.</description><identifier>ISSN: 8750-7587</identifier><identifier>EISSN: 1522-1601</identifier><identifier>DOI: 10.1152/japplphysiol.00081.2023</identifier><identifier>PMID: 37227183</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Aorta ; Atria ; Blood pressure ; Congestive heart failure ; Discordance ; Hypertension ; Magnetic resonance ; Medical instruments ; Muscle contraction ; Occlusion ; Overloading ; Regurgitation ; Stroke volume ; Systolic pressure ; Ventricle</subject><ispartof>Journal of applied physiology (1985), 2023-07, Vol.135 (1), p.53-59</ispartof><rights>Copyright American Physiological Society Jul 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-4481380edf70854812918596d236b17a34e1481cbcf091aa019903926992455f3</citedby><cites>FETCH-LOGICAL-c341t-4481380edf70854812918596d236b17a34e1481cbcf091aa019903926992455f3</cites><orcidid>0000-0002-5776-7793 ; 0000-0001-5371-0346 ; 0000-0001-5089-4047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3026,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37227183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshida, Keimei</creatorcontrib><creatorcontrib>Axelsen, Julie Birkmosse</creatorcontrib><creatorcontrib>Saku, Keita</creatorcontrib><creatorcontrib>Andersen, Asger</creatorcontrib><creatorcontrib>de Man, Frances S</creatorcontrib><creatorcontrib>Sunagawa, Kenji</creatorcontrib><creatorcontrib>Vonk Noordegraaf, Anton</creatorcontrib><creatorcontrib>Bogaard, Harm Jan</creatorcontrib><title>How to Incorporate Tricuspid Regurgitation in Right Ventricular-Pulmonary Arterial Coupling</title><title>Journal of applied physiology (1985)</title><addtitle>J Appl Physiol (1985)</addtitle><description>Adaptation of the right ventricle (RV) to a progressively increasing afterload is one of the hallmarks of pulmonary arterial hypertension (PAH). Pressure-volume loop analysis provides measures of load-independent RV contractility, i.e. end-systolic elastance, and pulmonary vascular properties, i.e. effective arterial elastance (E ). However, PAH induced-RV overload potentially results in tricuspid regurgitation (TR). TR makes RV eject to both PA and right atrium; thereby a ratio of RV end-systolic pressure (P ) to RV stroke volume (SV) could not correctly define E . To overcome this limitation, we introduced a two-parallel compliance model, i.e. E =1/(1/E +1/E ), while effective pulmonary arterial elastance (E =P /PASV) represents pulmonary vascular properties, effective tricuspid regurgitant elastance represents TR. We conducted animal experiments to validate this framework. First, we performed SV analysis with a pressure-volume catheter in the RV and a flow probe at the aorta in rats with and without pressure-overloaded RV to determine the effect of inferior vena cava (IVC) occlusion on TR. A discordance between the two techniques was found in rats with pressure-overloaded RV, not in Sham. This discordance diminished after IVC occlusion, suggesting that TR in pressure-overloaded RV was diminished by IVC occlusion. Next, we performed pressure-volume loop analysis in rats with pressure-overloaded RVs, calibrating RV volume by cardiac magnetic resonance. We found that IVC occlusion increased E , suggesting that a reduction of TR increased E . Using the proposed framework, E was indistinguishably to E post-IVC occlusion. We conclude that the proposed framework helps better understanding of the pathophysiology of PAH and associated right heart failure.</description><subject>Aorta</subject><subject>Atria</subject><subject>Blood pressure</subject><subject>Congestive heart failure</subject><subject>Discordance</subject><subject>Hypertension</subject><subject>Magnetic resonance</subject><subject>Medical instruments</subject><subject>Muscle contraction</subject><subject>Occlusion</subject><subject>Overloading</subject><subject>Regurgitation</subject><subject>Stroke volume</subject><subject>Systolic pressure</subject><subject>Ventricle</subject><issn>8750-7587</issn><issn>1522-1601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkMFOGzEQQK0KBCnlF4olLlw2zNi7a_sYRVCQIrVCwKWHlbPxBkfOerG9Qvx9nSatEKfRzLwZzTxCLhCmiBW73uhhcMPLe7TeTQFA4pQB41_IJHdZgTXgEZlIUUEhKilOydcYNwBYlhWekFMuGBMo-YT8vvNvNHl637c-DD7oZOhjsO0YB7uiD2Y9hrVNOlnfU9vTB7t-SfTZ9GnHOB2KX6Pb-l6HdzoLyQSrHZ37cXC2X38jx5120Zwf4hl5ur15nN8Vi58_7uezRdHyElNRlhK5BLPqBMgqJ0yhrFS9YrxeotC8NJir7bLtQKHWgEoBV6xWipVV1fEzcrXfOwT_OpqYmq2NrXFO98aPsWESFRMSQGT08hO68WPo83WZYkLJOt-QKbGn2uBjDKZrhmC3-ccGodn5bz76b_76b3b-8-T3w_5xuTWr_3P_hPM_xt6D7A</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Yoshida, Keimei</creator><creator>Axelsen, Julie Birkmosse</creator><creator>Saku, Keita</creator><creator>Andersen, Asger</creator><creator>de Man, Frances S</creator><creator>Sunagawa, Kenji</creator><creator>Vonk Noordegraaf, Anton</creator><creator>Bogaard, Harm Jan</creator><general>American Physiological Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5776-7793</orcidid><orcidid>https://orcid.org/0000-0001-5371-0346</orcidid><orcidid>https://orcid.org/0000-0001-5089-4047</orcidid></search><sort><creationdate>20230701</creationdate><title>How to Incorporate Tricuspid Regurgitation in Right Ventricular-Pulmonary Arterial Coupling</title><author>Yoshida, Keimei ; Axelsen, Julie Birkmosse ; Saku, Keita ; Andersen, Asger ; de Man, Frances S ; Sunagawa, Kenji ; Vonk Noordegraaf, Anton ; Bogaard, Harm Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-4481380edf70854812918596d236b17a34e1481cbcf091aa019903926992455f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aorta</topic><topic>Atria</topic><topic>Blood pressure</topic><topic>Congestive heart failure</topic><topic>Discordance</topic><topic>Hypertension</topic><topic>Magnetic resonance</topic><topic>Medical instruments</topic><topic>Muscle contraction</topic><topic>Occlusion</topic><topic>Overloading</topic><topic>Regurgitation</topic><topic>Stroke volume</topic><topic>Systolic pressure</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshida, Keimei</creatorcontrib><creatorcontrib>Axelsen, Julie Birkmosse</creatorcontrib><creatorcontrib>Saku, Keita</creatorcontrib><creatorcontrib>Andersen, Asger</creatorcontrib><creatorcontrib>de Man, Frances S</creatorcontrib><creatorcontrib>Sunagawa, Kenji</creatorcontrib><creatorcontrib>Vonk Noordegraaf, Anton</creatorcontrib><creatorcontrib>Bogaard, Harm Jan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied physiology (1985)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshida, Keimei</au><au>Axelsen, Julie Birkmosse</au><au>Saku, Keita</au><au>Andersen, Asger</au><au>de Man, Frances S</au><au>Sunagawa, Kenji</au><au>Vonk Noordegraaf, Anton</au><au>Bogaard, Harm Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to Incorporate Tricuspid Regurgitation in Right Ventricular-Pulmonary Arterial Coupling</atitle><jtitle>Journal of applied physiology (1985)</jtitle><addtitle>J Appl Physiol (1985)</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>135</volume><issue>1</issue><spage>53</spage><epage>59</epage><pages>53-59</pages><issn>8750-7587</issn><eissn>1522-1601</eissn><abstract>Adaptation of the right ventricle (RV) to a progressively increasing afterload is one of the hallmarks of pulmonary arterial hypertension (PAH). Pressure-volume loop analysis provides measures of load-independent RV contractility, i.e. end-systolic elastance, and pulmonary vascular properties, i.e. effective arterial elastance (E ). However, PAH induced-RV overload potentially results in tricuspid regurgitation (TR). TR makes RV eject to both PA and right atrium; thereby a ratio of RV end-systolic pressure (P ) to RV stroke volume (SV) could not correctly define E . To overcome this limitation, we introduced a two-parallel compliance model, i.e. E =1/(1/E +1/E ), while effective pulmonary arterial elastance (E =P /PASV) represents pulmonary vascular properties, effective tricuspid regurgitant elastance represents TR. We conducted animal experiments to validate this framework. First, we performed SV analysis with a pressure-volume catheter in the RV and a flow probe at the aorta in rats with and without pressure-overloaded RV to determine the effect of inferior vena cava (IVC) occlusion on TR. A discordance between the two techniques was found in rats with pressure-overloaded RV, not in Sham. This discordance diminished after IVC occlusion, suggesting that TR in pressure-overloaded RV was diminished by IVC occlusion. Next, we performed pressure-volume loop analysis in rats with pressure-overloaded RVs, calibrating RV volume by cardiac magnetic resonance. We found that IVC occlusion increased E , suggesting that a reduction of TR increased E . Using the proposed framework, E was indistinguishably to E post-IVC occlusion. We conclude that the proposed framework helps better understanding of the pathophysiology of PAH and associated right heart failure.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>37227183</pmid><doi>10.1152/japplphysiol.00081.2023</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5776-7793</orcidid><orcidid>https://orcid.org/0000-0001-5371-0346</orcidid><orcidid>https://orcid.org/0000-0001-5089-4047</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8750-7587
ispartof Journal of applied physiology (1985), 2023-07, Vol.135 (1), p.53-59
issn 8750-7587
1522-1601
language eng
recordid cdi_proquest_miscellaneous_2819278007
source American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Aorta
Atria
Blood pressure
Congestive heart failure
Discordance
Hypertension
Magnetic resonance
Medical instruments
Muscle contraction
Occlusion
Overloading
Regurgitation
Stroke volume
Systolic pressure
Ventricle
title How to Incorporate Tricuspid Regurgitation in Right Ventricular-Pulmonary Arterial Coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A32%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20Incorporate%20Tricuspid%20Regurgitation%20in%20Right%20Ventricular-Pulmonary%20Arterial%20Coupling&rft.jtitle=Journal%20of%20applied%20physiology%20(1985)&rft.au=Yoshida,%20Keimei&rft.date=2023-07-01&rft.volume=135&rft.issue=1&rft.spage=53&rft.epage=59&rft.pages=53-59&rft.issn=8750-7587&rft.eissn=1522-1601&rft_id=info:doi/10.1152/japplphysiol.00081.2023&rft_dat=%3Cproquest_cross%3E2819278007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827986708&rft_id=info:pmid/37227183&rfr_iscdi=true