How to Incorporate Tricuspid Regurgitation in Right Ventricular-Pulmonary Arterial Coupling
Adaptation of the right ventricle (RV) to a progressively increasing afterload is one of the hallmarks of pulmonary arterial hypertension (PAH). Pressure-volume loop analysis provides measures of load-independent RV contractility, i.e. end-systolic elastance, and pulmonary vascular properties, i.e....
Gespeichert in:
Veröffentlicht in: | Journal of applied physiology (1985) 2023-07, Vol.135 (1), p.53-59 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | 1 |
container_start_page | 53 |
container_title | Journal of applied physiology (1985) |
container_volume | 135 |
creator | Yoshida, Keimei Axelsen, Julie Birkmosse Saku, Keita Andersen, Asger de Man, Frances S Sunagawa, Kenji Vonk Noordegraaf, Anton Bogaard, Harm Jan |
description | Adaptation of the right ventricle (RV) to a progressively increasing afterload is one of the hallmarks of pulmonary arterial hypertension (PAH). Pressure-volume loop analysis provides measures of load-independent RV contractility, i.e. end-systolic elastance, and pulmonary vascular properties, i.e. effective arterial elastance (E
). However, PAH induced-RV overload potentially results in tricuspid regurgitation (TR). TR makes RV eject to both PA and right atrium; thereby a ratio of RV end-systolic pressure (P
) to RV stroke volume (SV) could not correctly define E
. To overcome this limitation, we introduced a two-parallel compliance model, i.e. E
=1/(1/E
+1/E
), while effective pulmonary arterial elastance (E
=P
/PASV) represents pulmonary vascular properties, effective tricuspid regurgitant elastance represents TR. We conducted animal experiments to validate this framework. First, we performed SV analysis with a pressure-volume catheter in the RV and a flow probe at the aorta in rats with and without pressure-overloaded RV to determine the effect of inferior vena cava (IVC) occlusion on TR. A discordance between the two techniques was found in rats with pressure-overloaded RV, not in Sham. This discordance diminished after IVC occlusion, suggesting that TR in pressure-overloaded RV was diminished by IVC occlusion. Next, we performed pressure-volume loop analysis in rats with pressure-overloaded RVs, calibrating RV volume by cardiac magnetic resonance. We found that IVC occlusion increased E
, suggesting that a reduction of TR increased E
. Using the proposed framework, E
was indistinguishably to E
post-IVC occlusion. We conclude that the proposed framework helps better understanding of the pathophysiology of PAH and associated right heart failure. |
doi_str_mv | 10.1152/japplphysiol.00081.2023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2819278007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2819278007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-4481380edf70854812918596d236b17a34e1481cbcf091aa019903926992455f3</originalsourceid><addsrcrecordid>eNpdkMFOGzEQQK0KBCnlF4olLlw2zNi7a_sYRVCQIrVCwKWHlbPxBkfOerG9Qvx9nSatEKfRzLwZzTxCLhCmiBW73uhhcMPLe7TeTQFA4pQB41_IJHdZgTXgEZlIUUEhKilOydcYNwBYlhWekFMuGBMo-YT8vvNvNHl637c-DD7oZOhjsO0YB7uiD2Y9hrVNOlnfU9vTB7t-SfTZ9GnHOB2KX6Pb-l6HdzoLyQSrHZ37cXC2X38jx5120Zwf4hl5ur15nN8Vi58_7uezRdHyElNRlhK5BLPqBMgqJ0yhrFS9YrxeotC8NJir7bLtQKHWgEoBV6xWipVV1fEzcrXfOwT_OpqYmq2NrXFO98aPsWESFRMSQGT08hO68WPo83WZYkLJOt-QKbGn2uBjDKZrhmC3-ccGodn5bz76b_76b3b-8-T3w_5xuTWr_3P_hPM_xt6D7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827986708</pqid></control><display><type>article</type><title>How to Incorporate Tricuspid Regurgitation in Right Ventricular-Pulmonary Arterial Coupling</title><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Yoshida, Keimei ; Axelsen, Julie Birkmosse ; Saku, Keita ; Andersen, Asger ; de Man, Frances S ; Sunagawa, Kenji ; Vonk Noordegraaf, Anton ; Bogaard, Harm Jan</creator><creatorcontrib>Yoshida, Keimei ; Axelsen, Julie Birkmosse ; Saku, Keita ; Andersen, Asger ; de Man, Frances S ; Sunagawa, Kenji ; Vonk Noordegraaf, Anton ; Bogaard, Harm Jan</creatorcontrib><description>Adaptation of the right ventricle (RV) to a progressively increasing afterload is one of the hallmarks of pulmonary arterial hypertension (PAH). Pressure-volume loop analysis provides measures of load-independent RV contractility, i.e. end-systolic elastance, and pulmonary vascular properties, i.e. effective arterial elastance (E
). However, PAH induced-RV overload potentially results in tricuspid regurgitation (TR). TR makes RV eject to both PA and right atrium; thereby a ratio of RV end-systolic pressure (P
) to RV stroke volume (SV) could not correctly define E
. To overcome this limitation, we introduced a two-parallel compliance model, i.e. E
=1/(1/E
+1/E
), while effective pulmonary arterial elastance (E
=P
/PASV) represents pulmonary vascular properties, effective tricuspid regurgitant elastance represents TR. We conducted animal experiments to validate this framework. First, we performed SV analysis with a pressure-volume catheter in the RV and a flow probe at the aorta in rats with and without pressure-overloaded RV to determine the effect of inferior vena cava (IVC) occlusion on TR. A discordance between the two techniques was found in rats with pressure-overloaded RV, not in Sham. This discordance diminished after IVC occlusion, suggesting that TR in pressure-overloaded RV was diminished by IVC occlusion. Next, we performed pressure-volume loop analysis in rats with pressure-overloaded RVs, calibrating RV volume by cardiac magnetic resonance. We found that IVC occlusion increased E
, suggesting that a reduction of TR increased E
. Using the proposed framework, E
was indistinguishably to E
post-IVC occlusion. We conclude that the proposed framework helps better understanding of the pathophysiology of PAH and associated right heart failure.</description><identifier>ISSN: 8750-7587</identifier><identifier>EISSN: 1522-1601</identifier><identifier>DOI: 10.1152/japplphysiol.00081.2023</identifier><identifier>PMID: 37227183</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Aorta ; Atria ; Blood pressure ; Congestive heart failure ; Discordance ; Hypertension ; Magnetic resonance ; Medical instruments ; Muscle contraction ; Occlusion ; Overloading ; Regurgitation ; Stroke volume ; Systolic pressure ; Ventricle</subject><ispartof>Journal of applied physiology (1985), 2023-07, Vol.135 (1), p.53-59</ispartof><rights>Copyright American Physiological Society Jul 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-4481380edf70854812918596d236b17a34e1481cbcf091aa019903926992455f3</citedby><cites>FETCH-LOGICAL-c341t-4481380edf70854812918596d236b17a34e1481cbcf091aa019903926992455f3</cites><orcidid>0000-0002-5776-7793 ; 0000-0001-5371-0346 ; 0000-0001-5089-4047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3026,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37227183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshida, Keimei</creatorcontrib><creatorcontrib>Axelsen, Julie Birkmosse</creatorcontrib><creatorcontrib>Saku, Keita</creatorcontrib><creatorcontrib>Andersen, Asger</creatorcontrib><creatorcontrib>de Man, Frances S</creatorcontrib><creatorcontrib>Sunagawa, Kenji</creatorcontrib><creatorcontrib>Vonk Noordegraaf, Anton</creatorcontrib><creatorcontrib>Bogaard, Harm Jan</creatorcontrib><title>How to Incorporate Tricuspid Regurgitation in Right Ventricular-Pulmonary Arterial Coupling</title><title>Journal of applied physiology (1985)</title><addtitle>J Appl Physiol (1985)</addtitle><description>Adaptation of the right ventricle (RV) to a progressively increasing afterload is one of the hallmarks of pulmonary arterial hypertension (PAH). Pressure-volume loop analysis provides measures of load-independent RV contractility, i.e. end-systolic elastance, and pulmonary vascular properties, i.e. effective arterial elastance (E
). However, PAH induced-RV overload potentially results in tricuspid regurgitation (TR). TR makes RV eject to both PA and right atrium; thereby a ratio of RV end-systolic pressure (P
) to RV stroke volume (SV) could not correctly define E
. To overcome this limitation, we introduced a two-parallel compliance model, i.e. E
=1/(1/E
+1/E
), while effective pulmonary arterial elastance (E
=P
/PASV) represents pulmonary vascular properties, effective tricuspid regurgitant elastance represents TR. We conducted animal experiments to validate this framework. First, we performed SV analysis with a pressure-volume catheter in the RV and a flow probe at the aorta in rats with and without pressure-overloaded RV to determine the effect of inferior vena cava (IVC) occlusion on TR. A discordance between the two techniques was found in rats with pressure-overloaded RV, not in Sham. This discordance diminished after IVC occlusion, suggesting that TR in pressure-overloaded RV was diminished by IVC occlusion. Next, we performed pressure-volume loop analysis in rats with pressure-overloaded RVs, calibrating RV volume by cardiac magnetic resonance. We found that IVC occlusion increased E
, suggesting that a reduction of TR increased E
. Using the proposed framework, E
was indistinguishably to E
post-IVC occlusion. We conclude that the proposed framework helps better understanding of the pathophysiology of PAH and associated right heart failure.</description><subject>Aorta</subject><subject>Atria</subject><subject>Blood pressure</subject><subject>Congestive heart failure</subject><subject>Discordance</subject><subject>Hypertension</subject><subject>Magnetic resonance</subject><subject>Medical instruments</subject><subject>Muscle contraction</subject><subject>Occlusion</subject><subject>Overloading</subject><subject>Regurgitation</subject><subject>Stroke volume</subject><subject>Systolic pressure</subject><subject>Ventricle</subject><issn>8750-7587</issn><issn>1522-1601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkMFOGzEQQK0KBCnlF4olLlw2zNi7a_sYRVCQIrVCwKWHlbPxBkfOerG9Qvx9nSatEKfRzLwZzTxCLhCmiBW73uhhcMPLe7TeTQFA4pQB41_IJHdZgTXgEZlIUUEhKilOydcYNwBYlhWekFMuGBMo-YT8vvNvNHl637c-DD7oZOhjsO0YB7uiD2Y9hrVNOlnfU9vTB7t-SfTZ9GnHOB2KX6Pb-l6HdzoLyQSrHZ37cXC2X38jx5120Zwf4hl5ur15nN8Vi58_7uezRdHyElNRlhK5BLPqBMgqJ0yhrFS9YrxeotC8NJir7bLtQKHWgEoBV6xWipVV1fEzcrXfOwT_OpqYmq2NrXFO98aPsWESFRMSQGT08hO68WPo83WZYkLJOt-QKbGn2uBjDKZrhmC3-ccGodn5bz76b_76b3b-8-T3w_5xuTWr_3P_hPM_xt6D7A</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Yoshida, Keimei</creator><creator>Axelsen, Julie Birkmosse</creator><creator>Saku, Keita</creator><creator>Andersen, Asger</creator><creator>de Man, Frances S</creator><creator>Sunagawa, Kenji</creator><creator>Vonk Noordegraaf, Anton</creator><creator>Bogaard, Harm Jan</creator><general>American Physiological Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5776-7793</orcidid><orcidid>https://orcid.org/0000-0001-5371-0346</orcidid><orcidid>https://orcid.org/0000-0001-5089-4047</orcidid></search><sort><creationdate>20230701</creationdate><title>How to Incorporate Tricuspid Regurgitation in Right Ventricular-Pulmonary Arterial Coupling</title><author>Yoshida, Keimei ; Axelsen, Julie Birkmosse ; Saku, Keita ; Andersen, Asger ; de Man, Frances S ; Sunagawa, Kenji ; Vonk Noordegraaf, Anton ; Bogaard, Harm Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-4481380edf70854812918596d236b17a34e1481cbcf091aa019903926992455f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aorta</topic><topic>Atria</topic><topic>Blood pressure</topic><topic>Congestive heart failure</topic><topic>Discordance</topic><topic>Hypertension</topic><topic>Magnetic resonance</topic><topic>Medical instruments</topic><topic>Muscle contraction</topic><topic>Occlusion</topic><topic>Overloading</topic><topic>Regurgitation</topic><topic>Stroke volume</topic><topic>Systolic pressure</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshida, Keimei</creatorcontrib><creatorcontrib>Axelsen, Julie Birkmosse</creatorcontrib><creatorcontrib>Saku, Keita</creatorcontrib><creatorcontrib>Andersen, Asger</creatorcontrib><creatorcontrib>de Man, Frances S</creatorcontrib><creatorcontrib>Sunagawa, Kenji</creatorcontrib><creatorcontrib>Vonk Noordegraaf, Anton</creatorcontrib><creatorcontrib>Bogaard, Harm Jan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied physiology (1985)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshida, Keimei</au><au>Axelsen, Julie Birkmosse</au><au>Saku, Keita</au><au>Andersen, Asger</au><au>de Man, Frances S</au><au>Sunagawa, Kenji</au><au>Vonk Noordegraaf, Anton</au><au>Bogaard, Harm Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to Incorporate Tricuspid Regurgitation in Right Ventricular-Pulmonary Arterial Coupling</atitle><jtitle>Journal of applied physiology (1985)</jtitle><addtitle>J Appl Physiol (1985)</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>135</volume><issue>1</issue><spage>53</spage><epage>59</epage><pages>53-59</pages><issn>8750-7587</issn><eissn>1522-1601</eissn><abstract>Adaptation of the right ventricle (RV) to a progressively increasing afterload is one of the hallmarks of pulmonary arterial hypertension (PAH). Pressure-volume loop analysis provides measures of load-independent RV contractility, i.e. end-systolic elastance, and pulmonary vascular properties, i.e. effective arterial elastance (E
). However, PAH induced-RV overload potentially results in tricuspid regurgitation (TR). TR makes RV eject to both PA and right atrium; thereby a ratio of RV end-systolic pressure (P
) to RV stroke volume (SV) could not correctly define E
. To overcome this limitation, we introduced a two-parallel compliance model, i.e. E
=1/(1/E
+1/E
), while effective pulmonary arterial elastance (E
=P
/PASV) represents pulmonary vascular properties, effective tricuspid regurgitant elastance represents TR. We conducted animal experiments to validate this framework. First, we performed SV analysis with a pressure-volume catheter in the RV and a flow probe at the aorta in rats with and without pressure-overloaded RV to determine the effect of inferior vena cava (IVC) occlusion on TR. A discordance between the two techniques was found in rats with pressure-overloaded RV, not in Sham. This discordance diminished after IVC occlusion, suggesting that TR in pressure-overloaded RV was diminished by IVC occlusion. Next, we performed pressure-volume loop analysis in rats with pressure-overloaded RVs, calibrating RV volume by cardiac magnetic resonance. We found that IVC occlusion increased E
, suggesting that a reduction of TR increased E
. Using the proposed framework, E
was indistinguishably to E
post-IVC occlusion. We conclude that the proposed framework helps better understanding of the pathophysiology of PAH and associated right heart failure.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>37227183</pmid><doi>10.1152/japplphysiol.00081.2023</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5776-7793</orcidid><orcidid>https://orcid.org/0000-0001-5371-0346</orcidid><orcidid>https://orcid.org/0000-0001-5089-4047</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8750-7587 |
ispartof | Journal of applied physiology (1985), 2023-07, Vol.135 (1), p.53-59 |
issn | 8750-7587 1522-1601 |
language | eng |
recordid | cdi_proquest_miscellaneous_2819278007 |
source | American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Aorta Atria Blood pressure Congestive heart failure Discordance Hypertension Magnetic resonance Medical instruments Muscle contraction Occlusion Overloading Regurgitation Stroke volume Systolic pressure Ventricle |
title | How to Incorporate Tricuspid Regurgitation in Right Ventricular-Pulmonary Arterial Coupling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A32%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20Incorporate%20Tricuspid%20Regurgitation%20in%20Right%20Ventricular-Pulmonary%20Arterial%20Coupling&rft.jtitle=Journal%20of%20applied%20physiology%20(1985)&rft.au=Yoshida,%20Keimei&rft.date=2023-07-01&rft.volume=135&rft.issue=1&rft.spage=53&rft.epage=59&rft.pages=53-59&rft.issn=8750-7587&rft.eissn=1522-1601&rft_id=info:doi/10.1152/japplphysiol.00081.2023&rft_dat=%3Cproquest_cross%3E2819278007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827986708&rft_id=info:pmid/37227183&rfr_iscdi=true |