Investigation of the cap layer for improved GeSn multiple quantum well laser performance

The study of all-group-IV SiGeSn lasers has opened a new avenue to Si-based light sources. SiGeSn heterostructure and quantum well lasers have been successfully demonstrated in the past few years. It has been reported that, for multiple quantum well lasers, the optical confinement factor plays an im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2023-04, Vol.48 (7), p.1626-1629
Hauptverfasser: Abernathy, Grey, Ojo, Solomon, Stanchu, Hryhorii, Zhou, Yiyin, Olorunsola, Oluwatobi, Grant, Joshua, Du, Wei, Jheng, Yue-Tong, Chang, Guo-En, Li, Baohua, Yu, Shui-Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1629
container_issue 7
container_start_page 1626
container_title Optics letters
container_volume 48
creator Abernathy, Grey
Ojo, Solomon
Stanchu, Hryhorii
Zhou, Yiyin
Olorunsola, Oluwatobi
Grant, Joshua
Du, Wei
Jheng, Yue-Tong
Chang, Guo-En
Li, Baohua
Yu, Shui-Qing
description The study of all-group-IV SiGeSn lasers has opened a new avenue to Si-based light sources. SiGeSn heterostructure and quantum well lasers have been successfully demonstrated in the past few years. It has been reported that, for multiple quantum well lasers, the optical confinement factor plays an important role in the net modal gain. In previous studies, adding a cap layer was proposed to increase the optical mode overlap with the active region and thereby improve the optical confinement factor of Fabry-Perot cavity lasers. In this work, SiGeSn/GeSn multiple quantum well (4-well) devices with various cap layer thicknesses, i.e., 0 (no cap), 190, 250, and 290 nm, are grown using a chemical vapor deposition reactor and characterized via optical pumping. While no-cap and thinner-cap devices only show spontaneous emission, the two thicker-cap devices exhibit lasing up to 77 K, with an emission peak at 2440 nm and a threshold of 214 kW/cm (250 nm cap device). The clear trend in device performance disclosed in this work provides guidance in device design for electrically injected SiGeSn quantum well lasers.
doi_str_mv 10.1364/OL.484837
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2818749092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2794138641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-9432ecc0fe2b7d82fa5c962ea06789907dc64cf55fa6356d11252213eaf489473</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlYP_gEJeNHD1nxtsjlK0Voo9KCCtyXNTnTLfjXZrfTfG6l68DJzeeblmRehS0qmlEtxt1pORSYyro7QmKZcJ0JpcYzGhAqZ6FSzEToLYUMIkYrzUzTiijGqmByjt0Wzg9CX76Yv2wa3DvcfgK3pcGX24LFrPS7rzrc7KPAcnhtcD1VfdhXg7WCafqjxJ1RVpEOkO_DxoDaNhXN04kwV4OJnT9Dr48PL7ClZruaL2f0ysZzyPtGCM7CWOGBrVWTMmdRqycBE1UxrogorhXVp6ozkqSwoZWl052CcyLRQfIJuDrnRcTvEV_K6DDYqmQbaIeQso5kSmmgW0et_6KYdfBPtchYLozyTcUzQ7YGyvg3Bg8s7X9bG73NK8u-689UyP9Qd2aufxGFdQ_FH_vbLvwAAzXlo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2794138641</pqid></control><display><type>article</type><title>Investigation of the cap layer for improved GeSn multiple quantum well laser performance</title><source>Optica Publishing Group Journals</source><creator>Abernathy, Grey ; Ojo, Solomon ; Stanchu, Hryhorii ; Zhou, Yiyin ; Olorunsola, Oluwatobi ; Grant, Joshua ; Du, Wei ; Jheng, Yue-Tong ; Chang, Guo-En ; Li, Baohua ; Yu, Shui-Qing</creator><creatorcontrib>Abernathy, Grey ; Ojo, Solomon ; Stanchu, Hryhorii ; Zhou, Yiyin ; Olorunsola, Oluwatobi ; Grant, Joshua ; Du, Wei ; Jheng, Yue-Tong ; Chang, Guo-En ; Li, Baohua ; Yu, Shui-Qing</creatorcontrib><description>The study of all-group-IV SiGeSn lasers has opened a new avenue to Si-based light sources. SiGeSn heterostructure and quantum well lasers have been successfully demonstrated in the past few years. It has been reported that, for multiple quantum well lasers, the optical confinement factor plays an important role in the net modal gain. In previous studies, adding a cap layer was proposed to increase the optical mode overlap with the active region and thereby improve the optical confinement factor of Fabry-Perot cavity lasers. In this work, SiGeSn/GeSn multiple quantum well (4-well) devices with various cap layer thicknesses, i.e., 0 (no cap), 190, 250, and 290 nm, are grown using a chemical vapor deposition reactor and characterized via optical pumping. While no-cap and thinner-cap devices only show spontaneous emission, the two thicker-cap devices exhibit lasing up to 77 K, with an emission peak at 2440 nm and a threshold of 214 kW/cm (250 nm cap device). The clear trend in device performance disclosed in this work provides guidance in device design for electrically injected SiGeSn quantum well lasers.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.484837</identifier><identifier>PMID: 37221726</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Chemical vapor deposition ; Confinement ; Fabry-Perot interferometers ; Heterostructures ; Intermetallic compounds ; Lasers ; Light sources ; Multi Quantum Wells ; Optical pumping ; Quantum well lasers ; Spontaneous emission ; Thickness</subject><ispartof>Optics letters, 2023-04, Vol.48 (7), p.1626-1629</ispartof><rights>Copyright Optical Society of America Apr 1, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-9432ecc0fe2b7d82fa5c962ea06789907dc64cf55fa6356d11252213eaf489473</citedby><cites>FETCH-LOGICAL-c313t-9432ecc0fe2b7d82fa5c962ea06789907dc64cf55fa6356d11252213eaf489473</cites><orcidid>0000-0001-9125-6850 ; 0000-0001-5034-9380 ; 0000-0001-5253-7350 ; 0000-0002-1375-2987 ; 0000-0002-3739-5451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37221726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abernathy, Grey</creatorcontrib><creatorcontrib>Ojo, Solomon</creatorcontrib><creatorcontrib>Stanchu, Hryhorii</creatorcontrib><creatorcontrib>Zhou, Yiyin</creatorcontrib><creatorcontrib>Olorunsola, Oluwatobi</creatorcontrib><creatorcontrib>Grant, Joshua</creatorcontrib><creatorcontrib>Du, Wei</creatorcontrib><creatorcontrib>Jheng, Yue-Tong</creatorcontrib><creatorcontrib>Chang, Guo-En</creatorcontrib><creatorcontrib>Li, Baohua</creatorcontrib><creatorcontrib>Yu, Shui-Qing</creatorcontrib><title>Investigation of the cap layer for improved GeSn multiple quantum well laser performance</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>The study of all-group-IV SiGeSn lasers has opened a new avenue to Si-based light sources. SiGeSn heterostructure and quantum well lasers have been successfully demonstrated in the past few years. It has been reported that, for multiple quantum well lasers, the optical confinement factor plays an important role in the net modal gain. In previous studies, adding a cap layer was proposed to increase the optical mode overlap with the active region and thereby improve the optical confinement factor of Fabry-Perot cavity lasers. In this work, SiGeSn/GeSn multiple quantum well (4-well) devices with various cap layer thicknesses, i.e., 0 (no cap), 190, 250, and 290 nm, are grown using a chemical vapor deposition reactor and characterized via optical pumping. While no-cap and thinner-cap devices only show spontaneous emission, the two thicker-cap devices exhibit lasing up to 77 K, with an emission peak at 2440 nm and a threshold of 214 kW/cm (250 nm cap device). The clear trend in device performance disclosed in this work provides guidance in device design for electrically injected SiGeSn quantum well lasers.</description><subject>Chemical vapor deposition</subject><subject>Confinement</subject><subject>Fabry-Perot interferometers</subject><subject>Heterostructures</subject><subject>Intermetallic compounds</subject><subject>Lasers</subject><subject>Light sources</subject><subject>Multi Quantum Wells</subject><subject>Optical pumping</subject><subject>Quantum well lasers</subject><subject>Spontaneous emission</subject><subject>Thickness</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMotlYP_gEJeNHD1nxtsjlK0Voo9KCCtyXNTnTLfjXZrfTfG6l68DJzeeblmRehS0qmlEtxt1pORSYyro7QmKZcJ0JpcYzGhAqZ6FSzEToLYUMIkYrzUzTiijGqmByjt0Wzg9CX76Yv2wa3DvcfgK3pcGX24LFrPS7rzrc7KPAcnhtcD1VfdhXg7WCafqjxJ1RVpEOkO_DxoDaNhXN04kwV4OJnT9Dr48PL7ClZruaL2f0ysZzyPtGCM7CWOGBrVWTMmdRqycBE1UxrogorhXVp6ozkqSwoZWl052CcyLRQfIJuDrnRcTvEV_K6DDYqmQbaIeQso5kSmmgW0et_6KYdfBPtchYLozyTcUzQ7YGyvg3Bg8s7X9bG73NK8u-689UyP9Qd2aufxGFdQ_FH_vbLvwAAzXlo</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Abernathy, Grey</creator><creator>Ojo, Solomon</creator><creator>Stanchu, Hryhorii</creator><creator>Zhou, Yiyin</creator><creator>Olorunsola, Oluwatobi</creator><creator>Grant, Joshua</creator><creator>Du, Wei</creator><creator>Jheng, Yue-Tong</creator><creator>Chang, Guo-En</creator><creator>Li, Baohua</creator><creator>Yu, Shui-Qing</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9125-6850</orcidid><orcidid>https://orcid.org/0000-0001-5034-9380</orcidid><orcidid>https://orcid.org/0000-0001-5253-7350</orcidid><orcidid>https://orcid.org/0000-0002-1375-2987</orcidid><orcidid>https://orcid.org/0000-0002-3739-5451</orcidid></search><sort><creationdate>20230401</creationdate><title>Investigation of the cap layer for improved GeSn multiple quantum well laser performance</title><author>Abernathy, Grey ; Ojo, Solomon ; Stanchu, Hryhorii ; Zhou, Yiyin ; Olorunsola, Oluwatobi ; Grant, Joshua ; Du, Wei ; Jheng, Yue-Tong ; Chang, Guo-En ; Li, Baohua ; Yu, Shui-Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-9432ecc0fe2b7d82fa5c962ea06789907dc64cf55fa6356d11252213eaf489473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical vapor deposition</topic><topic>Confinement</topic><topic>Fabry-Perot interferometers</topic><topic>Heterostructures</topic><topic>Intermetallic compounds</topic><topic>Lasers</topic><topic>Light sources</topic><topic>Multi Quantum Wells</topic><topic>Optical pumping</topic><topic>Quantum well lasers</topic><topic>Spontaneous emission</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abernathy, Grey</creatorcontrib><creatorcontrib>Ojo, Solomon</creatorcontrib><creatorcontrib>Stanchu, Hryhorii</creatorcontrib><creatorcontrib>Zhou, Yiyin</creatorcontrib><creatorcontrib>Olorunsola, Oluwatobi</creatorcontrib><creatorcontrib>Grant, Joshua</creatorcontrib><creatorcontrib>Du, Wei</creatorcontrib><creatorcontrib>Jheng, Yue-Tong</creatorcontrib><creatorcontrib>Chang, Guo-En</creatorcontrib><creatorcontrib>Li, Baohua</creatorcontrib><creatorcontrib>Yu, Shui-Qing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abernathy, Grey</au><au>Ojo, Solomon</au><au>Stanchu, Hryhorii</au><au>Zhou, Yiyin</au><au>Olorunsola, Oluwatobi</au><au>Grant, Joshua</au><au>Du, Wei</au><au>Jheng, Yue-Tong</au><au>Chang, Guo-En</au><au>Li, Baohua</au><au>Yu, Shui-Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the cap layer for improved GeSn multiple quantum well laser performance</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>48</volume><issue>7</issue><spage>1626</spage><epage>1629</epage><pages>1626-1629</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>The study of all-group-IV SiGeSn lasers has opened a new avenue to Si-based light sources. SiGeSn heterostructure and quantum well lasers have been successfully demonstrated in the past few years. It has been reported that, for multiple quantum well lasers, the optical confinement factor plays an important role in the net modal gain. In previous studies, adding a cap layer was proposed to increase the optical mode overlap with the active region and thereby improve the optical confinement factor of Fabry-Perot cavity lasers. In this work, SiGeSn/GeSn multiple quantum well (4-well) devices with various cap layer thicknesses, i.e., 0 (no cap), 190, 250, and 290 nm, are grown using a chemical vapor deposition reactor and characterized via optical pumping. While no-cap and thinner-cap devices only show spontaneous emission, the two thicker-cap devices exhibit lasing up to 77 K, with an emission peak at 2440 nm and a threshold of 214 kW/cm (250 nm cap device). The clear trend in device performance disclosed in this work provides guidance in device design for electrically injected SiGeSn quantum well lasers.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>37221726</pmid><doi>10.1364/OL.484837</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9125-6850</orcidid><orcidid>https://orcid.org/0000-0001-5034-9380</orcidid><orcidid>https://orcid.org/0000-0001-5253-7350</orcidid><orcidid>https://orcid.org/0000-0002-1375-2987</orcidid><orcidid>https://orcid.org/0000-0002-3739-5451</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0146-9592
ispartof Optics letters, 2023-04, Vol.48 (7), p.1626-1629
issn 0146-9592
1539-4794
language eng
recordid cdi_proquest_miscellaneous_2818749092
source Optica Publishing Group Journals
subjects Chemical vapor deposition
Confinement
Fabry-Perot interferometers
Heterostructures
Intermetallic compounds
Lasers
Light sources
Multi Quantum Wells
Optical pumping
Quantum well lasers
Spontaneous emission
Thickness
title Investigation of the cap layer for improved GeSn multiple quantum well laser performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20cap%20layer%20for%20improved%20GeSn%20multiple%20quantum%20well%20laser%20performance&rft.jtitle=Optics%20letters&rft.au=Abernathy,%20Grey&rft.date=2023-04-01&rft.volume=48&rft.issue=7&rft.spage=1626&rft.epage=1629&rft.pages=1626-1629&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.484837&rft_dat=%3Cproquest_cross%3E2794138641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2794138641&rft_id=info:pmid/37221726&rfr_iscdi=true