A continuum model of the dynamics of coupled oscillator arrays for phase-shifterless beam scanning

The behavior of arrays of coupled oscillators has been previously studied by computational solution of a set of nonlinear differential equations describing the time dependence of each oscillator in the presence of signals coupled from neighboring oscillators. The equations are sufficiently complicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 1999-04, Vol.47 (4), p.463-470
Hauptverfasser: Pogorzelski, R.J., Maccarini, P.F., York, R.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 470
container_issue 4
container_start_page 463
container_title IEEE transactions on microwave theory and techniques
container_volume 47
creator Pogorzelski, R.J.
Maccarini, P.F.
York, R.A.
description The behavior of arrays of coupled oscillators has been previously studied by computational solution of a set of nonlinear differential equations describing the time dependence of each oscillator in the presence of signals coupled from neighboring oscillators. The equations are sufficiently complicated in that intuitive understanding of the phenomena which arise is exceedingly difficult. We propose a simplified theory of such arrays in which the relative phases of the oscillator signals are represented by a continuous function defined over the array. This function satisfies a linear partial differential equation of diffusion type, which may be solved via the Laplace transform. This theory is used to study the dynamic behavior of a linear array of oscillators, which results when the end oscillators are detuned to achieve the phase distribution required for steering a beam radiated by such an array.
doi_str_mv 10.1109/22.754880
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28186459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>754880</ieee_id><sourcerecordid>919914197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-4a91cde437ebb3bcdc3fdd32dfcb7a9e7de0ce36f2389e53f80c63060d0377913</originalsourceid><addsrcrecordid>eNqNkb1PwzAUxC0EEqUwsDJ5AjGk2HES22NV8SVVYoE5cuxnGpTExS8Z-t-TkooRmN6d3k-nk46QS84WnDN9l6YLmWdKsSMy43kuE11IdkxmjHGV6EyxU3KG-DHaLGdqRqoltaHr624YWtoGBw0NnvYboG7Xmba2uPc2DNsGHA1o66YxfYjUxGh2SP0otxuDkOCm9j3EBhBpBaalaE3X1d37OTnxpkG4ONw5eXu4f109JeuXx-fVcp3YTMg-yYzm1sGooapEZZ0V3jmROm8raTRIB8yCKHwqlIZceMVsIVjBHBNSai7m5GbK3cbwOQD2ZVujhbFvB2HAUnOteca1HMnrX8lUcVVkuf4bLDTjTP0jsVA6198lbyfQxoAYwZfbWLcm7krOyv2CZZqW04IjezWxNQD8cIfnF4dTlxs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26895991</pqid></control><display><type>article</type><title>A continuum model of the dynamics of coupled oscillator arrays for phase-shifterless beam scanning</title><source>IEEE Electronic Library (IEL)</source><creator>Pogorzelski, R.J. ; Maccarini, P.F. ; York, R.A.</creator><creatorcontrib>Pogorzelski, R.J. ; Maccarini, P.F. ; York, R.A.</creatorcontrib><description>The behavior of arrays of coupled oscillators has been previously studied by computational solution of a set of nonlinear differential equations describing the time dependence of each oscillator in the presence of signals coupled from neighboring oscillators. The equations are sufficiently complicated in that intuitive understanding of the phenomena which arise is exceedingly difficult. We propose a simplified theory of such arrays in which the relative phases of the oscillator signals are represented by a continuous function defined over the array. This function satisfies a linear partial differential equation of diffusion type, which may be solved via the Laplace transform. This theory is used to study the dynamic behavior of a linear array of oscillators, which results when the end oscillators are detuned to achieve the phase distribution required for steering a beam radiated by such an array.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/22.754880</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerodynamics ; Antenna arrays ; Arrays ; Beams (radiation) ; Differential equations ; Injection-locked oscillators ; Laplace equations ; Laplace transforms ; Mathematical analysis ; Mathematical models ; Nonlinear dynamics ; Nonlinear equations ; Optical coupling ; Oscillators ; Phased arrays ; Poisson equations ; Steady-state</subject><ispartof>IEEE transactions on microwave theory and techniques, 1999-04, Vol.47 (4), p.463-470</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-4a91cde437ebb3bcdc3fdd32dfcb7a9e7de0ce36f2389e53f80c63060d0377913</citedby><cites>FETCH-LOGICAL-c437t-4a91cde437ebb3bcdc3fdd32dfcb7a9e7de0ce36f2389e53f80c63060d0377913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/754880$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/754880$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pogorzelski, R.J.</creatorcontrib><creatorcontrib>Maccarini, P.F.</creatorcontrib><creatorcontrib>York, R.A.</creatorcontrib><title>A continuum model of the dynamics of coupled oscillator arrays for phase-shifterless beam scanning</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>The behavior of arrays of coupled oscillators has been previously studied by computational solution of a set of nonlinear differential equations describing the time dependence of each oscillator in the presence of signals coupled from neighboring oscillators. The equations are sufficiently complicated in that intuitive understanding of the phenomena which arise is exceedingly difficult. We propose a simplified theory of such arrays in which the relative phases of the oscillator signals are represented by a continuous function defined over the array. This function satisfies a linear partial differential equation of diffusion type, which may be solved via the Laplace transform. This theory is used to study the dynamic behavior of a linear array of oscillators, which results when the end oscillators are detuned to achieve the phase distribution required for steering a beam radiated by such an array.</description><subject>Aerodynamics</subject><subject>Antenna arrays</subject><subject>Arrays</subject><subject>Beams (radiation)</subject><subject>Differential equations</subject><subject>Injection-locked oscillators</subject><subject>Laplace equations</subject><subject>Laplace transforms</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear equations</subject><subject>Optical coupling</subject><subject>Oscillators</subject><subject>Phased arrays</subject><subject>Poisson equations</subject><subject>Steady-state</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkb1PwzAUxC0EEqUwsDJ5AjGk2HES22NV8SVVYoE5cuxnGpTExS8Z-t-TkooRmN6d3k-nk46QS84WnDN9l6YLmWdKsSMy43kuE11IdkxmjHGV6EyxU3KG-DHaLGdqRqoltaHr624YWtoGBw0NnvYboG7Xmba2uPc2DNsGHA1o66YxfYjUxGh2SP0otxuDkOCm9j3EBhBpBaalaE3X1d37OTnxpkG4ONw5eXu4f109JeuXx-fVcp3YTMg-yYzm1sGooapEZZ0V3jmROm8raTRIB8yCKHwqlIZceMVsIVjBHBNSai7m5GbK3cbwOQD2ZVujhbFvB2HAUnOteca1HMnrX8lUcVVkuf4bLDTjTP0jsVA6198lbyfQxoAYwZfbWLcm7krOyv2CZZqW04IjezWxNQD8cIfnF4dTlxs</recordid><startdate>19990401</startdate><enddate>19990401</enddate><creator>Pogorzelski, R.J.</creator><creator>Maccarini, P.F.</creator><creator>York, R.A.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19990401</creationdate><title>A continuum model of the dynamics of coupled oscillator arrays for phase-shifterless beam scanning</title><author>Pogorzelski, R.J. ; Maccarini, P.F. ; York, R.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-4a91cde437ebb3bcdc3fdd32dfcb7a9e7de0ce36f2389e53f80c63060d0377913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Aerodynamics</topic><topic>Antenna arrays</topic><topic>Arrays</topic><topic>Beams (radiation)</topic><topic>Differential equations</topic><topic>Injection-locked oscillators</topic><topic>Laplace equations</topic><topic>Laplace transforms</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear equations</topic><topic>Optical coupling</topic><topic>Oscillators</topic><topic>Phased arrays</topic><topic>Poisson equations</topic><topic>Steady-state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pogorzelski, R.J.</creatorcontrib><creatorcontrib>Maccarini, P.F.</creatorcontrib><creatorcontrib>York, R.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pogorzelski, R.J.</au><au>Maccarini, P.F.</au><au>York, R.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A continuum model of the dynamics of coupled oscillator arrays for phase-shifterless beam scanning</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>1999-04-01</date><risdate>1999</risdate><volume>47</volume><issue>4</issue><spage>463</spage><epage>470</epage><pages>463-470</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>The behavior of arrays of coupled oscillators has been previously studied by computational solution of a set of nonlinear differential equations describing the time dependence of each oscillator in the presence of signals coupled from neighboring oscillators. The equations are sufficiently complicated in that intuitive understanding of the phenomena which arise is exceedingly difficult. We propose a simplified theory of such arrays in which the relative phases of the oscillator signals are represented by a continuous function defined over the array. This function satisfies a linear partial differential equation of diffusion type, which may be solved via the Laplace transform. This theory is used to study the dynamic behavior of a linear array of oscillators, which results when the end oscillators are detuned to achieve the phase distribution required for steering a beam radiated by such an array.</abstract><pub>IEEE</pub><doi>10.1109/22.754880</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 1999-04, Vol.47 (4), p.463-470
issn 0018-9480
1557-9670
language eng
recordid cdi_proquest_miscellaneous_28186459
source IEEE Electronic Library (IEL)
subjects Aerodynamics
Antenna arrays
Arrays
Beams (radiation)
Differential equations
Injection-locked oscillators
Laplace equations
Laplace transforms
Mathematical analysis
Mathematical models
Nonlinear dynamics
Nonlinear equations
Optical coupling
Oscillators
Phased arrays
Poisson equations
Steady-state
title A continuum model of the dynamics of coupled oscillator arrays for phase-shifterless beam scanning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20continuum%20model%20of%20the%20dynamics%20of%20coupled%20oscillator%20arrays%20for%20phase-shifterless%20beam%20scanning&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Pogorzelski,%20R.J.&rft.date=1999-04-01&rft.volume=47&rft.issue=4&rft.spage=463&rft.epage=470&rft.pages=463-470&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/22.754880&rft_dat=%3Cproquest_RIE%3E919914197%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26895991&rft_id=info:pmid/&rft_ieee_id=754880&rfr_iscdi=true