Compact polarization-independent Mach-Zehnder space switch combining carrier depletion and the quantum confined Stark effect
We have developed an n-doped InGaAs-InAsP quantum well between InP, which is suited for a polarization-independent Mach-Zender interferometric (MZI) space switch operating at 1.55 /spl mu/m. The InAsP is compressively strained and the InGaAs is tensile strained for polarization independence and for...
Gespeichert in:
Veröffentlicht in: | IEEE journal of quantum electronics 2003-02, Vol.39 (2), p.379-383 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 383 |
---|---|
container_issue | 2 |
container_start_page | 379 |
container_title | IEEE journal of quantum electronics |
container_volume | 39 |
creator | Prasanth, R. Haverkort, J.E.M. Wolter, J.H. |
description | We have developed an n-doped InGaAs-InAsP quantum well between InP, which is suited for a polarization-independent Mach-Zender interferometric (MZI) space switch operating at 1.55 /spl mu/m. The InAsP is compressively strained and the InGaAs is tensile strained for polarization independence and for strain balancing. The important boundary condition for the design of this structure is the waveguide loss, which we limit to 0.6 dB/cm, and the crosstalk due to imbalance in the MZI, which we limit to |
doi_str_mv | 10.1109/JQE.2002.807208 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28186414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1172859</ieee_id><sourcerecordid>926294563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-2a50a86ed6982bd187c1bd90af07e1077df26ab10e8ab2efaafd88a3a413dfe3</originalsourceid><addsrcrecordid>eNqFkc2L1TAUxYso-Bxdu3ATBHXVN7lp2qRLeYxfjIg4KzflNr3xZWzTTpIiin-8KW9gwIVu7uVyf-fA4RTFU-B7AN6ef_h8sReci73mSnB9r9hBXesSFFT3ix3noMsWWvWweBTjdT6l1HxX_D7M04ImsWUeMbhfmNzsS-cHWigPn9hHNMfyKx3zFVjMLLH4wyVzZGaeeued_8YMhuDyO6tG2hwY-oGlI7GbFX1ap8x66zwN7EvC8J2RtWTS4-KBxTHSk9t9Vly9ubg6vCsvP719f3h9WRoJPJUCa466oaFptegH0MpAP7QcLVcEXKnBigZ74KSxF2QR7aA1ViihGixVZ8Wrk-0S5puVYuomFw2NI3qa19i1ohGtrJsqky__SQoNupEg_w8qDbVSOoPP_wKv5zX4nLbTWlYceLNB5yfIhDnGQLZbgpsw_OyAd1u5XS6328rtTuVmxYtbW4wGRxvQGxfvZLLOmeQW6NmJc0R09wYldN1WfwABHq8b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884301068</pqid></control><display><type>article</type><title>Compact polarization-independent Mach-Zehnder space switch combining carrier depletion and the quantum confined Stark effect</title><source>IEEE Electronic Library (IEL)</source><creator>Prasanth, R. ; Haverkort, J.E.M. ; Wolter, J.H.</creator><creatorcontrib>Prasanth, R. ; Haverkort, J.E.M. ; Wolter, J.H.</creatorcontrib><description>We have developed an n-doped InGaAs-InAsP quantum well between InP, which is suited for a polarization-independent Mach-Zender interferometric (MZI) space switch operating at 1.55 /spl mu/m. The InAsP is compressively strained and the InGaAs is tensile strained for polarization independence and for strain balancing. The important boundary condition for the design of this structure is the waveguide loss, which we limit to 0.6 dB/cm, and the crosstalk due to imbalance in the MZI, which we limit to <-30 dB. To reduce the size of the phase shifting region, while imposing this boundary condition, we combine the quantum confined Stark effect (QCSE) effect and the carrier-depletion effect by using an n-doped quantum well. The QCSE was first optimized for an undoped InGaAs-InAsP quantum well. A polarization independent /spl Delta/n of 7.8/spl middot/10/sup -4/ at 100 kV/cm was obtained at the expense of 0.2-dB/cm excess waveguide loss and 0.1-dB/mm electroabsorption loss. The carrier-depletion effect in a 2/spl middot/10/sup 11/cm/sup -2/-doped QW increases /spl Delta/n with a factor 2.6 to 2/spl middot/10/sup -3/, at the expense of 0.4-dB/cm free-carrier absorption-induced waveguide loss. The combination of the QCSE and carrier depletion results in a phase-shifter length of 0.46 mm for an MZI in push-pull configuration.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2002.807208</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Boundary conditions ; Carrier confinement ; Carriers ; Crosstalk ; Depletion ; Exact sciences and technology ; Expenses ; Fundamental areas of phenomenology (including applications) ; Indium gallium arsenide ; Indium phosphide ; Noise levels ; Optical computers, logic elements, interconnects, switches; neural networks ; Optical elements, devices, and systems ; Optics ; Physics ; Polarization ; Potential well ; Quantum wells ; Stark effect ; Switches ; Tensile strain ; Waveguides</subject><ispartof>IEEE journal of quantum electronics, 2003-02, Vol.39 (2), p.379-383</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-2a50a86ed6982bd187c1bd90af07e1077df26ab10e8ab2efaafd88a3a413dfe3</citedby><cites>FETCH-LOGICAL-c410t-2a50a86ed6982bd187c1bd90af07e1077df26ab10e8ab2efaafd88a3a413dfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1172859$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1172859$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14526243$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Prasanth, R.</creatorcontrib><creatorcontrib>Haverkort, J.E.M.</creatorcontrib><creatorcontrib>Wolter, J.H.</creatorcontrib><title>Compact polarization-independent Mach-Zehnder space switch combining carrier depletion and the quantum confined Stark effect</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>We have developed an n-doped InGaAs-InAsP quantum well between InP, which is suited for a polarization-independent Mach-Zender interferometric (MZI) space switch operating at 1.55 /spl mu/m. The InAsP is compressively strained and the InGaAs is tensile strained for polarization independence and for strain balancing. The important boundary condition for the design of this structure is the waveguide loss, which we limit to 0.6 dB/cm, and the crosstalk due to imbalance in the MZI, which we limit to <-30 dB. To reduce the size of the phase shifting region, while imposing this boundary condition, we combine the quantum confined Stark effect (QCSE) effect and the carrier-depletion effect by using an n-doped quantum well. The QCSE was first optimized for an undoped InGaAs-InAsP quantum well. A polarization independent /spl Delta/n of 7.8/spl middot/10/sup -4/ at 100 kV/cm was obtained at the expense of 0.2-dB/cm excess waveguide loss and 0.1-dB/mm electroabsorption loss. The carrier-depletion effect in a 2/spl middot/10/sup 11/cm/sup -2/-doped QW increases /spl Delta/n with a factor 2.6 to 2/spl middot/10/sup -3/, at the expense of 0.4-dB/cm free-carrier absorption-induced waveguide loss. The combination of the QCSE and carrier depletion results in a phase-shifter length of 0.46 mm for an MZI in push-pull configuration.</description><subject>Boundary conditions</subject><subject>Carrier confinement</subject><subject>Carriers</subject><subject>Crosstalk</subject><subject>Depletion</subject><subject>Exact sciences and technology</subject><subject>Expenses</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Indium gallium arsenide</subject><subject>Indium phosphide</subject><subject>Noise levels</subject><subject>Optical computers, logic elements, interconnects, switches; neural networks</subject><subject>Optical elements, devices, and systems</subject><subject>Optics</subject><subject>Physics</subject><subject>Polarization</subject><subject>Potential well</subject><subject>Quantum wells</subject><subject>Stark effect</subject><subject>Switches</subject><subject>Tensile strain</subject><subject>Waveguides</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkc2L1TAUxYso-Bxdu3ATBHXVN7lp2qRLeYxfjIg4KzflNr3xZWzTTpIiin-8KW9gwIVu7uVyf-fA4RTFU-B7AN6ef_h8sReci73mSnB9r9hBXesSFFT3ix3noMsWWvWweBTjdT6l1HxX_D7M04ImsWUeMbhfmNzsS-cHWigPn9hHNMfyKx3zFVjMLLH4wyVzZGaeeued_8YMhuDyO6tG2hwY-oGlI7GbFX1ap8x66zwN7EvC8J2RtWTS4-KBxTHSk9t9Vly9ubg6vCsvP719f3h9WRoJPJUCa466oaFptegH0MpAP7QcLVcEXKnBigZ74KSxF2QR7aA1ViihGixVZ8Wrk-0S5puVYuomFw2NI3qa19i1ohGtrJsqky__SQoNupEg_w8qDbVSOoPP_wKv5zX4nLbTWlYceLNB5yfIhDnGQLZbgpsw_OyAd1u5XS6328rtTuVmxYtbW4wGRxvQGxfvZLLOmeQW6NmJc0R09wYldN1WfwABHq8b</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>Prasanth, R.</creator><creator>Haverkort, J.E.M.</creator><creator>Wolter, J.H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030201</creationdate><title>Compact polarization-independent Mach-Zehnder space switch combining carrier depletion and the quantum confined Stark effect</title><author>Prasanth, R. ; Haverkort, J.E.M. ; Wolter, J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-2a50a86ed6982bd187c1bd90af07e1077df26ab10e8ab2efaafd88a3a413dfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Boundary conditions</topic><topic>Carrier confinement</topic><topic>Carriers</topic><topic>Crosstalk</topic><topic>Depletion</topic><topic>Exact sciences and technology</topic><topic>Expenses</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Indium gallium arsenide</topic><topic>Indium phosphide</topic><topic>Noise levels</topic><topic>Optical computers, logic elements, interconnects, switches; neural networks</topic><topic>Optical elements, devices, and systems</topic><topic>Optics</topic><topic>Physics</topic><topic>Polarization</topic><topic>Potential well</topic><topic>Quantum wells</topic><topic>Stark effect</topic><topic>Switches</topic><topic>Tensile strain</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasanth, R.</creatorcontrib><creatorcontrib>Haverkort, J.E.M.</creatorcontrib><creatorcontrib>Wolter, J.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prasanth, R.</au><au>Haverkort, J.E.M.</au><au>Wolter, J.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact polarization-independent Mach-Zehnder space switch combining carrier depletion and the quantum confined Stark effect</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2003-02-01</date><risdate>2003</risdate><volume>39</volume><issue>2</issue><spage>379</spage><epage>383</epage><pages>379-383</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>We have developed an n-doped InGaAs-InAsP quantum well between InP, which is suited for a polarization-independent Mach-Zender interferometric (MZI) space switch operating at 1.55 /spl mu/m. The InAsP is compressively strained and the InGaAs is tensile strained for polarization independence and for strain balancing. The important boundary condition for the design of this structure is the waveguide loss, which we limit to 0.6 dB/cm, and the crosstalk due to imbalance in the MZI, which we limit to <-30 dB. To reduce the size of the phase shifting region, while imposing this boundary condition, we combine the quantum confined Stark effect (QCSE) effect and the carrier-depletion effect by using an n-doped quantum well. The QCSE was first optimized for an undoped InGaAs-InAsP quantum well. A polarization independent /spl Delta/n of 7.8/spl middot/10/sup -4/ at 100 kV/cm was obtained at the expense of 0.2-dB/cm excess waveguide loss and 0.1-dB/mm electroabsorption loss. The carrier-depletion effect in a 2/spl middot/10/sup 11/cm/sup -2/-doped QW increases /spl Delta/n with a factor 2.6 to 2/spl middot/10/sup -3/, at the expense of 0.4-dB/cm free-carrier absorption-induced waveguide loss. The combination of the QCSE and carrier depletion results in a phase-shifter length of 0.46 mm for an MZI in push-pull configuration.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JQE.2002.807208</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9197 |
ispartof | IEEE journal of quantum electronics, 2003-02, Vol.39 (2), p.379-383 |
issn | 0018-9197 1558-1713 |
language | eng |
recordid | cdi_proquest_miscellaneous_28186414 |
source | IEEE Electronic Library (IEL) |
subjects | Boundary conditions Carrier confinement Carriers Crosstalk Depletion Exact sciences and technology Expenses Fundamental areas of phenomenology (including applications) Indium gallium arsenide Indium phosphide Noise levels Optical computers, logic elements, interconnects, switches neural networks Optical elements, devices, and systems Optics Physics Polarization Potential well Quantum wells Stark effect Switches Tensile strain Waveguides |
title | Compact polarization-independent Mach-Zehnder space switch combining carrier depletion and the quantum confined Stark effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20polarization-independent%20Mach-Zehnder%20space%20switch%20combining%20carrier%20depletion%20and%20the%20quantum%20confined%20Stark%20effect&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Prasanth,%20R.&rft.date=2003-02-01&rft.volume=39&rft.issue=2&rft.spage=379&rft.epage=383&rft.pages=379-383&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2002.807208&rft_dat=%3Cproquest_RIE%3E926294563%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884301068&rft_id=info:pmid/&rft_ieee_id=1172859&rfr_iscdi=true |