Compact polarization-independent Mach-Zehnder space switch combining carrier depletion and the quantum confined Stark effect

We have developed an n-doped InGaAs-InAsP quantum well between InP, which is suited for a polarization-independent Mach-Zender interferometric (MZI) space switch operating at 1.55 /spl mu/m. The InAsP is compressively strained and the InGaAs is tensile strained for polarization independence and for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of quantum electronics 2003-02, Vol.39 (2), p.379-383
Hauptverfasser: Prasanth, R., Haverkort, J.E.M., Wolter, J.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 383
container_issue 2
container_start_page 379
container_title IEEE journal of quantum electronics
container_volume 39
creator Prasanth, R.
Haverkort, J.E.M.
Wolter, J.H.
description We have developed an n-doped InGaAs-InAsP quantum well between InP, which is suited for a polarization-independent Mach-Zender interferometric (MZI) space switch operating at 1.55 /spl mu/m. The InAsP is compressively strained and the InGaAs is tensile strained for polarization independence and for strain balancing. The important boundary condition for the design of this structure is the waveguide loss, which we limit to 0.6 dB/cm, and the crosstalk due to imbalance in the MZI, which we limit to
doi_str_mv 10.1109/JQE.2002.807208
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28186414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1172859</ieee_id><sourcerecordid>926294563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-2a50a86ed6982bd187c1bd90af07e1077df26ab10e8ab2efaafd88a3a413dfe3</originalsourceid><addsrcrecordid>eNqFkc2L1TAUxYso-Bxdu3ATBHXVN7lp2qRLeYxfjIg4KzflNr3xZWzTTpIiin-8KW9gwIVu7uVyf-fA4RTFU-B7AN6ef_h8sReci73mSnB9r9hBXesSFFT3ix3noMsWWvWweBTjdT6l1HxX_D7M04ImsWUeMbhfmNzsS-cHWigPn9hHNMfyKx3zFVjMLLH4wyVzZGaeeued_8YMhuDyO6tG2hwY-oGlI7GbFX1ap8x66zwN7EvC8J2RtWTS4-KBxTHSk9t9Vly9ubg6vCsvP719f3h9WRoJPJUCa466oaFptegH0MpAP7QcLVcEXKnBigZ74KSxF2QR7aA1ViihGixVZ8Wrk-0S5puVYuomFw2NI3qa19i1ohGtrJsqky__SQoNupEg_w8qDbVSOoPP_wKv5zX4nLbTWlYceLNB5yfIhDnGQLZbgpsw_OyAd1u5XS6328rtTuVmxYtbW4wGRxvQGxfvZLLOmeQW6NmJc0R09wYldN1WfwABHq8b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884301068</pqid></control><display><type>article</type><title>Compact polarization-independent Mach-Zehnder space switch combining carrier depletion and the quantum confined Stark effect</title><source>IEEE Electronic Library (IEL)</source><creator>Prasanth, R. ; Haverkort, J.E.M. ; Wolter, J.H.</creator><creatorcontrib>Prasanth, R. ; Haverkort, J.E.M. ; Wolter, J.H.</creatorcontrib><description>We have developed an n-doped InGaAs-InAsP quantum well between InP, which is suited for a polarization-independent Mach-Zender interferometric (MZI) space switch operating at 1.55 /spl mu/m. The InAsP is compressively strained and the InGaAs is tensile strained for polarization independence and for strain balancing. The important boundary condition for the design of this structure is the waveguide loss, which we limit to 0.6 dB/cm, and the crosstalk due to imbalance in the MZI, which we limit to &lt;-30 dB. To reduce the size of the phase shifting region, while imposing this boundary condition, we combine the quantum confined Stark effect (QCSE) effect and the carrier-depletion effect by using an n-doped quantum well. The QCSE was first optimized for an undoped InGaAs-InAsP quantum well. A polarization independent /spl Delta/n of 7.8/spl middot/10/sup -4/ at 100 kV/cm was obtained at the expense of 0.2-dB/cm excess waveguide loss and 0.1-dB/mm electroabsorption loss. The carrier-depletion effect in a 2/spl middot/10/sup 11/cm/sup -2/-doped QW increases /spl Delta/n with a factor 2.6 to 2/spl middot/10/sup -3/, at the expense of 0.4-dB/cm free-carrier absorption-induced waveguide loss. The combination of the QCSE and carrier depletion results in a phase-shifter length of 0.46 mm for an MZI in push-pull configuration.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2002.807208</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Boundary conditions ; Carrier confinement ; Carriers ; Crosstalk ; Depletion ; Exact sciences and technology ; Expenses ; Fundamental areas of phenomenology (including applications) ; Indium gallium arsenide ; Indium phosphide ; Noise levels ; Optical computers, logic elements, interconnects, switches; neural networks ; Optical elements, devices, and systems ; Optics ; Physics ; Polarization ; Potential well ; Quantum wells ; Stark effect ; Switches ; Tensile strain ; Waveguides</subject><ispartof>IEEE journal of quantum electronics, 2003-02, Vol.39 (2), p.379-383</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-2a50a86ed6982bd187c1bd90af07e1077df26ab10e8ab2efaafd88a3a413dfe3</citedby><cites>FETCH-LOGICAL-c410t-2a50a86ed6982bd187c1bd90af07e1077df26ab10e8ab2efaafd88a3a413dfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1172859$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1172859$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14526243$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Prasanth, R.</creatorcontrib><creatorcontrib>Haverkort, J.E.M.</creatorcontrib><creatorcontrib>Wolter, J.H.</creatorcontrib><title>Compact polarization-independent Mach-Zehnder space switch combining carrier depletion and the quantum confined Stark effect</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>We have developed an n-doped InGaAs-InAsP quantum well between InP, which is suited for a polarization-independent Mach-Zender interferometric (MZI) space switch operating at 1.55 /spl mu/m. The InAsP is compressively strained and the InGaAs is tensile strained for polarization independence and for strain balancing. The important boundary condition for the design of this structure is the waveguide loss, which we limit to 0.6 dB/cm, and the crosstalk due to imbalance in the MZI, which we limit to &lt;-30 dB. To reduce the size of the phase shifting region, while imposing this boundary condition, we combine the quantum confined Stark effect (QCSE) effect and the carrier-depletion effect by using an n-doped quantum well. The QCSE was first optimized for an undoped InGaAs-InAsP quantum well. A polarization independent /spl Delta/n of 7.8/spl middot/10/sup -4/ at 100 kV/cm was obtained at the expense of 0.2-dB/cm excess waveguide loss and 0.1-dB/mm electroabsorption loss. The carrier-depletion effect in a 2/spl middot/10/sup 11/cm/sup -2/-doped QW increases /spl Delta/n with a factor 2.6 to 2/spl middot/10/sup -3/, at the expense of 0.4-dB/cm free-carrier absorption-induced waveguide loss. The combination of the QCSE and carrier depletion results in a phase-shifter length of 0.46 mm for an MZI in push-pull configuration.</description><subject>Boundary conditions</subject><subject>Carrier confinement</subject><subject>Carriers</subject><subject>Crosstalk</subject><subject>Depletion</subject><subject>Exact sciences and technology</subject><subject>Expenses</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Indium gallium arsenide</subject><subject>Indium phosphide</subject><subject>Noise levels</subject><subject>Optical computers, logic elements, interconnects, switches; neural networks</subject><subject>Optical elements, devices, and systems</subject><subject>Optics</subject><subject>Physics</subject><subject>Polarization</subject><subject>Potential well</subject><subject>Quantum wells</subject><subject>Stark effect</subject><subject>Switches</subject><subject>Tensile strain</subject><subject>Waveguides</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkc2L1TAUxYso-Bxdu3ATBHXVN7lp2qRLeYxfjIg4KzflNr3xZWzTTpIiin-8KW9gwIVu7uVyf-fA4RTFU-B7AN6ef_h8sReci73mSnB9r9hBXesSFFT3ix3noMsWWvWweBTjdT6l1HxX_D7M04ImsWUeMbhfmNzsS-cHWigPn9hHNMfyKx3zFVjMLLH4wyVzZGaeeued_8YMhuDyO6tG2hwY-oGlI7GbFX1ap8x66zwN7EvC8J2RtWTS4-KBxTHSk9t9Vly9ubg6vCsvP719f3h9WRoJPJUCa466oaFptegH0MpAP7QcLVcEXKnBigZ74KSxF2QR7aA1ViihGixVZ8Wrk-0S5puVYuomFw2NI3qa19i1ohGtrJsqky__SQoNupEg_w8qDbVSOoPP_wKv5zX4nLbTWlYceLNB5yfIhDnGQLZbgpsw_OyAd1u5XS6328rtTuVmxYtbW4wGRxvQGxfvZLLOmeQW6NmJc0R09wYldN1WfwABHq8b</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>Prasanth, R.</creator><creator>Haverkort, J.E.M.</creator><creator>Wolter, J.H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030201</creationdate><title>Compact polarization-independent Mach-Zehnder space switch combining carrier depletion and the quantum confined Stark effect</title><author>Prasanth, R. ; Haverkort, J.E.M. ; Wolter, J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-2a50a86ed6982bd187c1bd90af07e1077df26ab10e8ab2efaafd88a3a413dfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Boundary conditions</topic><topic>Carrier confinement</topic><topic>Carriers</topic><topic>Crosstalk</topic><topic>Depletion</topic><topic>Exact sciences and technology</topic><topic>Expenses</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Indium gallium arsenide</topic><topic>Indium phosphide</topic><topic>Noise levels</topic><topic>Optical computers, logic elements, interconnects, switches; neural networks</topic><topic>Optical elements, devices, and systems</topic><topic>Optics</topic><topic>Physics</topic><topic>Polarization</topic><topic>Potential well</topic><topic>Quantum wells</topic><topic>Stark effect</topic><topic>Switches</topic><topic>Tensile strain</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasanth, R.</creatorcontrib><creatorcontrib>Haverkort, J.E.M.</creatorcontrib><creatorcontrib>Wolter, J.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prasanth, R.</au><au>Haverkort, J.E.M.</au><au>Wolter, J.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact polarization-independent Mach-Zehnder space switch combining carrier depletion and the quantum confined Stark effect</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2003-02-01</date><risdate>2003</risdate><volume>39</volume><issue>2</issue><spage>379</spage><epage>383</epage><pages>379-383</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>We have developed an n-doped InGaAs-InAsP quantum well between InP, which is suited for a polarization-independent Mach-Zender interferometric (MZI) space switch operating at 1.55 /spl mu/m. The InAsP is compressively strained and the InGaAs is tensile strained for polarization independence and for strain balancing. The important boundary condition for the design of this structure is the waveguide loss, which we limit to 0.6 dB/cm, and the crosstalk due to imbalance in the MZI, which we limit to &lt;-30 dB. To reduce the size of the phase shifting region, while imposing this boundary condition, we combine the quantum confined Stark effect (QCSE) effect and the carrier-depletion effect by using an n-doped quantum well. The QCSE was first optimized for an undoped InGaAs-InAsP quantum well. A polarization independent /spl Delta/n of 7.8/spl middot/10/sup -4/ at 100 kV/cm was obtained at the expense of 0.2-dB/cm excess waveguide loss and 0.1-dB/mm electroabsorption loss. The carrier-depletion effect in a 2/spl middot/10/sup 11/cm/sup -2/-doped QW increases /spl Delta/n with a factor 2.6 to 2/spl middot/10/sup -3/, at the expense of 0.4-dB/cm free-carrier absorption-induced waveguide loss. The combination of the QCSE and carrier depletion results in a phase-shifter length of 0.46 mm for an MZI in push-pull configuration.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JQE.2002.807208</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9197
ispartof IEEE journal of quantum electronics, 2003-02, Vol.39 (2), p.379-383
issn 0018-9197
1558-1713
language eng
recordid cdi_proquest_miscellaneous_28186414
source IEEE Electronic Library (IEL)
subjects Boundary conditions
Carrier confinement
Carriers
Crosstalk
Depletion
Exact sciences and technology
Expenses
Fundamental areas of phenomenology (including applications)
Indium gallium arsenide
Indium phosphide
Noise levels
Optical computers, logic elements, interconnects, switches
neural networks
Optical elements, devices, and systems
Optics
Physics
Polarization
Potential well
Quantum wells
Stark effect
Switches
Tensile strain
Waveguides
title Compact polarization-independent Mach-Zehnder space switch combining carrier depletion and the quantum confined Stark effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20polarization-independent%20Mach-Zehnder%20space%20switch%20combining%20carrier%20depletion%20and%20the%20quantum%20confined%20Stark%20effect&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Prasanth,%20R.&rft.date=2003-02-01&rft.volume=39&rft.issue=2&rft.spage=379&rft.epage=383&rft.pages=379-383&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2002.807208&rft_dat=%3Cproquest_RIE%3E926294563%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884301068&rft_id=info:pmid/&rft_ieee_id=1172859&rfr_iscdi=true