A fundamental solution method for inverse heat conduction problem

In this paper, we develop a new meshless and integration-free numerical scheme for solving an inverse heat conduction problem. The numerical scheme is developed based on the use of the fundamental solution as a radial basis function. To regularize the resultant ill-conditioned linear system of equat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering analysis with boundary elements 2004-05, Vol.28 (5), p.489-495
Hauptverfasser: Hon, Y C, Wei, T
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 495
container_issue 5
container_start_page 489
container_title Engineering analysis with boundary elements
container_volume 28
creator Hon, Y C
Wei, T
description In this paper, we develop a new meshless and integration-free numerical scheme for solving an inverse heat conduction problem. The numerical scheme is developed based on the use of the fundamental solution as a radial basis function. To regularize the resultant ill-conditioned linear system of equations, we apply successfully both the Tikhonov regularization technique and the L-curve method to obtain a stable numerical approximation to the solution. The approach is readily extendable to solve high-dimensional problems under irregular domain.
doi_str_mv 10.1016/S0955-7997(03)00102-4
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_28185943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28185943</sourcerecordid><originalsourceid>FETCH-LOGICAL-p184t-fbdda2f9fc21938f772469db0b01fe2563bf5f616eecad6935a14ae7e6c03d833</originalsourceid><addsrcrecordid>eNo9jcFKAzEURbNQsLZ-gpCV6GL0JZlkJsuhaBUKXajrkkle6EgmqZOM329RcXXhnsu5hFwzuGfA1MMraCmrRuvmFsQdAANe1Wdk8V9fkMucP05AAKgF6Trq5-jMiLGYQHMKcxlSpCOWQ3LUp4kO8QunjPSAplCbopvtz-Q4pT7guCLn3oSMV3-5JO9Pj2_r52q727ysu211ZG1dKt87Z7jX3nKmReubhtdKux56YB65VKL30iumEK1xSgtpWG2wQWVBuFaIJbn59Z5-P2fMZT8O2WIIJmKa8563rJW6FuIbxvtNiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28185943</pqid></control><display><type>article</type><title>A fundamental solution method for inverse heat conduction problem</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hon, Y C ; Wei, T</creator><creatorcontrib>Hon, Y C ; Wei, T</creatorcontrib><description>In this paper, we develop a new meshless and integration-free numerical scheme for solving an inverse heat conduction problem. The numerical scheme is developed based on the use of the fundamental solution as a radial basis function. To regularize the resultant ill-conditioned linear system of equations, we apply successfully both the Tikhonov regularization technique and the L-curve method to obtain a stable numerical approximation to the solution. The approach is readily extendable to solve high-dimensional problems under irregular domain.</description><identifier>ISSN: 0955-7997</identifier><identifier>DOI: 10.1016/S0955-7997(03)00102-4</identifier><language>eng</language><ispartof>Engineering analysis with boundary elements, 2004-05, Vol.28 (5), p.489-495</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Hon, Y C</creatorcontrib><creatorcontrib>Wei, T</creatorcontrib><title>A fundamental solution method for inverse heat conduction problem</title><title>Engineering analysis with boundary elements</title><description>In this paper, we develop a new meshless and integration-free numerical scheme for solving an inverse heat conduction problem. The numerical scheme is developed based on the use of the fundamental solution as a radial basis function. To regularize the resultant ill-conditioned linear system of equations, we apply successfully both the Tikhonov regularization technique and the L-curve method to obtain a stable numerical approximation to the solution. The approach is readily extendable to solve high-dimensional problems under irregular domain.</description><issn>0955-7997</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNo9jcFKAzEURbNQsLZ-gpCV6GL0JZlkJsuhaBUKXajrkkle6EgmqZOM329RcXXhnsu5hFwzuGfA1MMraCmrRuvmFsQdAANe1Wdk8V9fkMucP05AAKgF6Trq5-jMiLGYQHMKcxlSpCOWQ3LUp4kO8QunjPSAplCbopvtz-Q4pT7guCLn3oSMV3-5JO9Pj2_r52q727ysu211ZG1dKt87Z7jX3nKmReubhtdKux56YB65VKL30iumEK1xSgtpWG2wQWVBuFaIJbn59Z5-P2fMZT8O2WIIJmKa8563rJW6FuIbxvtNiA</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Hon, Y C</creator><creator>Wei, T</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20040501</creationdate><title>A fundamental solution method for inverse heat conduction problem</title><author>Hon, Y C ; Wei, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p184t-fbdda2f9fc21938f772469db0b01fe2563bf5f616eecad6935a14ae7e6c03d833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hon, Y C</creatorcontrib><creatorcontrib>Wei, T</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hon, Y C</au><au>Wei, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fundamental solution method for inverse heat conduction problem</atitle><jtitle>Engineering analysis with boundary elements</jtitle><date>2004-05-01</date><risdate>2004</risdate><volume>28</volume><issue>5</issue><spage>489</spage><epage>495</epage><pages>489-495</pages><issn>0955-7997</issn><abstract>In this paper, we develop a new meshless and integration-free numerical scheme for solving an inverse heat conduction problem. The numerical scheme is developed based on the use of the fundamental solution as a radial basis function. To regularize the resultant ill-conditioned linear system of equations, we apply successfully both the Tikhonov regularization technique and the L-curve method to obtain a stable numerical approximation to the solution. The approach is readily extendable to solve high-dimensional problems under irregular domain.</abstract><doi>10.1016/S0955-7997(03)00102-4</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-7997
ispartof Engineering analysis with boundary elements, 2004-05, Vol.28 (5), p.489-495
issn 0955-7997
language eng
recordid cdi_proquest_miscellaneous_28185943
source Access via ScienceDirect (Elsevier)
title A fundamental solution method for inverse heat conduction problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T03%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fundamental%20solution%20method%20for%20inverse%20heat%20conduction%20problem&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Hon,%20Y%20C&rft.date=2004-05-01&rft.volume=28&rft.issue=5&rft.spage=489&rft.epage=495&rft.pages=489-495&rft.issn=0955-7997&rft_id=info:doi/10.1016/S0955-7997(03)00102-4&rft_dat=%3Cproquest%3E28185943%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28185943&rft_id=info:pmid/&rfr_iscdi=true