120-Gb/s VCSEL-based parallel-optical interconnect and custom 120-Gb/s testing station
A 120-Gb/s optical link (12 channels at 10 Gb/s/ch for both a transmitter and a receiver) has been demonstrated. The link operated at a bit-error rate of less than 10/sup -12/ with all channels operating and with a total fiber length of 316 m, which comprises 300 m of next-generation (OM-3) multimod...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2004-09, Vol.22 (9), p.2200-2212 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2212 |
---|---|
container_issue | 9 |
container_start_page | 2200 |
container_title | Journal of lightwave technology |
container_volume | 22 |
creator | Kuchta, D.M. Kwark, Y.H. Schuster, C. Baks, C. Haymes, C. Schaub, J. Pepeljugoski, P. Shan, L. John, R. Kucharski, D. Rogers, D. Ritter, M. Jewell, J. Graham, L.A. Schrodinger, K. Schild, A. Rein, H.-M. |
description | A 120-Gb/s optical link (12 channels at 10 Gb/s/ch for both a transmitter and a receiver) has been demonstrated. The link operated at a bit-error rate of less than 10/sup -12/ with all channels operating and with a total fiber length of 316 m, which comprises 300 m of next-generation (OM-3) multimode fiber (MMF) plus 16 m of standard-grade MMF. This is the first time that a parallel link with this bandwidth at this per-channel rate has ever been demonstrated. For the transmitter, an SiGe laser driver was combined with a GaAs vertical-cavity surface-emitting laser (VCSEL) array. For the receiver, the signal from a GaAs photodiode array was amplified by a 12-channel SiGe receiver integrated circuit. Key to the demonstration were several custom testing tools, most notably a 12-channel pattern generator. The package is very similar to the commercial parallel modules that are available today, but the per-channel bit rate is three times higher than that for the commercial modules. The new modules demonstrate the possibility of extending the parallel-optical module technology that is available today into a distance-bandwidth product regime that is unattainable for copper cables. |
doi_str_mv | 10.1109/JLT.2004.833255 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28184045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1333120</ieee_id><sourcerecordid>28737858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-1897a8e4cc3414b3b5e9358242aece210e6b7c6fa0c57de4e7dc3bd85ea78cfb3</originalsourceid><addsrcrecordid>eNqN0TFPwzAQBWALgUQpzAwsEQOwpLV9dn0ZUVUKqBIDpWvkOFeUKk1K7A78e1wVgcRQMd3yvdPpHmOXgg-E4NnweTYfSM7VAAGk1kesJ7TGVEoBx6zHDUCKRqpTdub9inOhFJoeWwjJ02kx9Mli_DqZpYX1VCYb29m6pjptN6Fytk6qJlDn2qYhFxLblInb-tCuk590IB-q5j3xwYaqbc7ZydLWni6-Z5-9PUzm48d09jJ9Gt_PUqeUDKnAzFgk5RwooQooNGWgUSppyZEUnEaFcaOl5U6bkhSZ0kFRoiZr0C0L6LPb_d5N135s4w35uvKO6to21G59jtlISoOcR3lzUEo0YFDjP6BAxZWO8O4gFFxKRMxARHr9h67abdfEz-SIgCbbsT4b7pHrWu87Wuabrlrb7jNuyncV57HifFdxvq84Jq72iYqIfjUAxF7gC6qKn1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883879889</pqid></control><display><type>article</type><title>120-Gb/s VCSEL-based parallel-optical interconnect and custom 120-Gb/s testing station</title><source>IEEE Electronic Library (IEL)</source><creator>Kuchta, D.M. ; Kwark, Y.H. ; Schuster, C. ; Baks, C. ; Haymes, C. ; Schaub, J. ; Pepeljugoski, P. ; Shan, L. ; John, R. ; Kucharski, D. ; Rogers, D. ; Ritter, M. ; Jewell, J. ; Graham, L.A. ; Schrodinger, K. ; Schild, A. ; Rein, H.-M.</creator><creatorcontrib>Kuchta, D.M. ; Kwark, Y.H. ; Schuster, C. ; Baks, C. ; Haymes, C. ; Schaub, J. ; Pepeljugoski, P. ; Shan, L. ; John, R. ; Kucharski, D. ; Rogers, D. ; Ritter, M. ; Jewell, J. ; Graham, L.A. ; Schrodinger, K. ; Schild, A. ; Rein, H.-M.</creatorcontrib><description>A 120-Gb/s optical link (12 channels at 10 Gb/s/ch for both a transmitter and a receiver) has been demonstrated. The link operated at a bit-error rate of less than 10/sup -12/ with all channels operating and with a total fiber length of 316 m, which comprises 300 m of next-generation (OM-3) multimode fiber (MMF) plus 16 m of standard-grade MMF. This is the first time that a parallel link with this bandwidth at this per-channel rate has ever been demonstrated. For the transmitter, an SiGe laser driver was combined with a GaAs vertical-cavity surface-emitting laser (VCSEL) array. For the receiver, the signal from a GaAs photodiode array was amplified by a 12-channel SiGe receiver integrated circuit. Key to the demonstration were several custom testing tools, most notably a 12-channel pattern generator. The package is very similar to the commercial parallel modules that are available today, but the per-channel bit rate is three times higher than that for the commercial modules. The new modules demonstrate the possibility of extending the parallel-optical module technology that is available today into a distance-bandwidth product regime that is unattainable for copper cables.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2004.833255</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arrays ; Channels ; Fiber lasers ; Gallium arsenide ; Gallium arsenides ; Germanium silicon alloys ; Integrated circuit interconnections ; Links ; Modules ; Optical fiber communication ; Optical transmitters ; Receivers ; Silicon germanides ; Silicon germanium ; Surface emitting lasers ; Testing ; Vertical cavity surface emitting lasers</subject><ispartof>Journal of lightwave technology, 2004-09, Vol.22 (9), p.2200-2212</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-1897a8e4cc3414b3b5e9358242aece210e6b7c6fa0c57de4e7dc3bd85ea78cfb3</citedby><cites>FETCH-LOGICAL-c442t-1897a8e4cc3414b3b5e9358242aece210e6b7c6fa0c57de4e7dc3bd85ea78cfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1333120$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1333120$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuchta, D.M.</creatorcontrib><creatorcontrib>Kwark, Y.H.</creatorcontrib><creatorcontrib>Schuster, C.</creatorcontrib><creatorcontrib>Baks, C.</creatorcontrib><creatorcontrib>Haymes, C.</creatorcontrib><creatorcontrib>Schaub, J.</creatorcontrib><creatorcontrib>Pepeljugoski, P.</creatorcontrib><creatorcontrib>Shan, L.</creatorcontrib><creatorcontrib>John, R.</creatorcontrib><creatorcontrib>Kucharski, D.</creatorcontrib><creatorcontrib>Rogers, D.</creatorcontrib><creatorcontrib>Ritter, M.</creatorcontrib><creatorcontrib>Jewell, J.</creatorcontrib><creatorcontrib>Graham, L.A.</creatorcontrib><creatorcontrib>Schrodinger, K.</creatorcontrib><creatorcontrib>Schild, A.</creatorcontrib><creatorcontrib>Rein, H.-M.</creatorcontrib><title>120-Gb/s VCSEL-based parallel-optical interconnect and custom 120-Gb/s testing station</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>A 120-Gb/s optical link (12 channels at 10 Gb/s/ch for both a transmitter and a receiver) has been demonstrated. The link operated at a bit-error rate of less than 10/sup -12/ with all channels operating and with a total fiber length of 316 m, which comprises 300 m of next-generation (OM-3) multimode fiber (MMF) plus 16 m of standard-grade MMF. This is the first time that a parallel link with this bandwidth at this per-channel rate has ever been demonstrated. For the transmitter, an SiGe laser driver was combined with a GaAs vertical-cavity surface-emitting laser (VCSEL) array. For the receiver, the signal from a GaAs photodiode array was amplified by a 12-channel SiGe receiver integrated circuit. Key to the demonstration were several custom testing tools, most notably a 12-channel pattern generator. The package is very similar to the commercial parallel modules that are available today, but the per-channel bit rate is three times higher than that for the commercial modules. The new modules demonstrate the possibility of extending the parallel-optical module technology that is available today into a distance-bandwidth product regime that is unattainable for copper cables.</description><subject>Arrays</subject><subject>Channels</subject><subject>Fiber lasers</subject><subject>Gallium arsenide</subject><subject>Gallium arsenides</subject><subject>Germanium silicon alloys</subject><subject>Integrated circuit interconnections</subject><subject>Links</subject><subject>Modules</subject><subject>Optical fiber communication</subject><subject>Optical transmitters</subject><subject>Receivers</subject><subject>Silicon germanides</subject><subject>Silicon germanium</subject><subject>Surface emitting lasers</subject><subject>Testing</subject><subject>Vertical cavity surface emitting lasers</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0TFPwzAQBWALgUQpzAwsEQOwpLV9dn0ZUVUKqBIDpWvkOFeUKk1K7A78e1wVgcRQMd3yvdPpHmOXgg-E4NnweTYfSM7VAAGk1kesJ7TGVEoBx6zHDUCKRqpTdub9inOhFJoeWwjJ02kx9Mli_DqZpYX1VCYb29m6pjptN6Fytk6qJlDn2qYhFxLblInb-tCuk590IB-q5j3xwYaqbc7ZydLWni6-Z5-9PUzm48d09jJ9Gt_PUqeUDKnAzFgk5RwooQooNGWgUSppyZEUnEaFcaOl5U6bkhSZ0kFRoiZr0C0L6LPb_d5N135s4w35uvKO6to21G59jtlISoOcR3lzUEo0YFDjP6BAxZWO8O4gFFxKRMxARHr9h67abdfEz-SIgCbbsT4b7pHrWu87Wuabrlrb7jNuyncV57HifFdxvq84Jq72iYqIfjUAxF7gC6qKn1c</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Kuchta, D.M.</creator><creator>Kwark, Y.H.</creator><creator>Schuster, C.</creator><creator>Baks, C.</creator><creator>Haymes, C.</creator><creator>Schaub, J.</creator><creator>Pepeljugoski, P.</creator><creator>Shan, L.</creator><creator>John, R.</creator><creator>Kucharski, D.</creator><creator>Rogers, D.</creator><creator>Ritter, M.</creator><creator>Jewell, J.</creator><creator>Graham, L.A.</creator><creator>Schrodinger, K.</creator><creator>Schild, A.</creator><creator>Rein, H.-M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>8BQ</scope><scope>JG9</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20040901</creationdate><title>120-Gb/s VCSEL-based parallel-optical interconnect and custom 120-Gb/s testing station</title><author>Kuchta, D.M. ; Kwark, Y.H. ; Schuster, C. ; Baks, C. ; Haymes, C. ; Schaub, J. ; Pepeljugoski, P. ; Shan, L. ; John, R. ; Kucharski, D. ; Rogers, D. ; Ritter, M. ; Jewell, J. ; Graham, L.A. ; Schrodinger, K. ; Schild, A. ; Rein, H.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-1897a8e4cc3414b3b5e9358242aece210e6b7c6fa0c57de4e7dc3bd85ea78cfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Arrays</topic><topic>Channels</topic><topic>Fiber lasers</topic><topic>Gallium arsenide</topic><topic>Gallium arsenides</topic><topic>Germanium silicon alloys</topic><topic>Integrated circuit interconnections</topic><topic>Links</topic><topic>Modules</topic><topic>Optical fiber communication</topic><topic>Optical transmitters</topic><topic>Receivers</topic><topic>Silicon germanides</topic><topic>Silicon germanium</topic><topic>Surface emitting lasers</topic><topic>Testing</topic><topic>Vertical cavity surface emitting lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuchta, D.M.</creatorcontrib><creatorcontrib>Kwark, Y.H.</creatorcontrib><creatorcontrib>Schuster, C.</creatorcontrib><creatorcontrib>Baks, C.</creatorcontrib><creatorcontrib>Haymes, C.</creatorcontrib><creatorcontrib>Schaub, J.</creatorcontrib><creatorcontrib>Pepeljugoski, P.</creatorcontrib><creatorcontrib>Shan, L.</creatorcontrib><creatorcontrib>John, R.</creatorcontrib><creatorcontrib>Kucharski, D.</creatorcontrib><creatorcontrib>Rogers, D.</creatorcontrib><creatorcontrib>Ritter, M.</creatorcontrib><creatorcontrib>Jewell, J.</creatorcontrib><creatorcontrib>Graham, L.A.</creatorcontrib><creatorcontrib>Schrodinger, K.</creatorcontrib><creatorcontrib>Schild, A.</creatorcontrib><creatorcontrib>Rein, H.-M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuchta, D.M.</au><au>Kwark, Y.H.</au><au>Schuster, C.</au><au>Baks, C.</au><au>Haymes, C.</au><au>Schaub, J.</au><au>Pepeljugoski, P.</au><au>Shan, L.</au><au>John, R.</au><au>Kucharski, D.</au><au>Rogers, D.</au><au>Ritter, M.</au><au>Jewell, J.</au><au>Graham, L.A.</au><au>Schrodinger, K.</au><au>Schild, A.</au><au>Rein, H.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>120-Gb/s VCSEL-based parallel-optical interconnect and custom 120-Gb/s testing station</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2004-09-01</date><risdate>2004</risdate><volume>22</volume><issue>9</issue><spage>2200</spage><epage>2212</epage><pages>2200-2212</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>A 120-Gb/s optical link (12 channels at 10 Gb/s/ch for both a transmitter and a receiver) has been demonstrated. The link operated at a bit-error rate of less than 10/sup -12/ with all channels operating and with a total fiber length of 316 m, which comprises 300 m of next-generation (OM-3) multimode fiber (MMF) plus 16 m of standard-grade MMF. This is the first time that a parallel link with this bandwidth at this per-channel rate has ever been demonstrated. For the transmitter, an SiGe laser driver was combined with a GaAs vertical-cavity surface-emitting laser (VCSEL) array. For the receiver, the signal from a GaAs photodiode array was amplified by a 12-channel SiGe receiver integrated circuit. Key to the demonstration were several custom testing tools, most notably a 12-channel pattern generator. The package is very similar to the commercial parallel modules that are available today, but the per-channel bit rate is three times higher than that for the commercial modules. The new modules demonstrate the possibility of extending the parallel-optical module technology that is available today into a distance-bandwidth product regime that is unattainable for copper cables.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2004.833255</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2004-09, Vol.22 (9), p.2200-2212 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_proquest_miscellaneous_28184045 |
source | IEEE Electronic Library (IEL) |
subjects | Arrays Channels Fiber lasers Gallium arsenide Gallium arsenides Germanium silicon alloys Integrated circuit interconnections Links Modules Optical fiber communication Optical transmitters Receivers Silicon germanides Silicon germanium Surface emitting lasers Testing Vertical cavity surface emitting lasers |
title | 120-Gb/s VCSEL-based parallel-optical interconnect and custom 120-Gb/s testing station |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=120-Gb/s%20VCSEL-based%20parallel-optical%20interconnect%20and%20custom%20120-Gb/s%20testing%20station&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Kuchta,%20D.M.&rft.date=2004-09-01&rft.volume=22&rft.issue=9&rft.spage=2200&rft.epage=2212&rft.pages=2200-2212&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2004.833255&rft_dat=%3Cproquest_RIE%3E28737858%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883879889&rft_id=info:pmid/&rft_ieee_id=1333120&rfr_iscdi=true |