Beamspace Root-MUSIC
Motivated by the superior performance of Root-MUSIC relative to spectral MUSIC and ESPRIT in a uniform linear array scenario and the many advantages of operating in beamspace, a beamspace implementation of Root-MUSIC is developed. To facilitate reduced computational complexity, procedures are presen...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 1993-01, Vol.41 (1), p.344-364 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 364 |
---|---|
container_issue | 1 |
container_start_page | 344 |
container_title | IEEE transactions on signal processing |
container_volume | 41 |
creator | Zoltowski, M.D. Kautz, G.M. Silverstein, S.D. |
description | Motivated by the superior performance of Root-MUSIC relative to spectral MUSIC and ESPRIT in a uniform linear array scenario and the many advantages of operating in beamspace, a beamspace implementation of Root-MUSIC is developed. To facilitate reduced computational complexity, procedures are presented for designing orthogonal matrix beam-formers composed of conjugate centrosymmetric weight vectors and producing beams exhibiting common out-of-band nulls. It is shown that the former property enables one to work with the real part of the beamspace sample covariance matrix irrespective of the angle-of-arrival estimation algorithm employed. The latter property enables one to work with a reduced degree polynomial in the final stage of Root-MUSIC. The N x B discrete Fourier transform (DFT) matrix beamformer composed of B columns of the N x N DFT matrix, where N is the number of elements, is employed as a prototype matrix beamformer possessing the aforementioned properties. It is used to establish these two results and to derive other matrix beamformers having the desired features plus additional features, such as producing beams with reduced out-of-band sidelobes and/or common nulls at prescribed locations. Simulations are presented comparing the performance of beamspace Root-MUSIC with that of element space Root-MUSIC and that of beamspace spectral MUSIC. |
doi_str_mv | 10.1109/TSP.1993.193151 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28182243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>193151</ieee_id><sourcerecordid>25944878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-ee493d8304346f4a9ea5be6d43e5eba42cf5d6567167a6692655ac9e60b885303</originalsourceid><addsrcrecordid>eNqFkEFLw0AQRhdRsFZvguDJk7e0O7uzm92jlqqFimJb8LZsNhOIJCZm04P_3pQIHr3MDHzvm8Nj7Ar4DIDb-XbzOgNr5TAkKDhiE7AICcdUHw83VzJRJn0_ZWcxfnAOiFZP2OU9-Tq2PtDNW9P0yfNus1qcs5PCV5EufveU7R6W28VTsn55XC3u1kmQgvcJEVqZG8lRoi7QW_IqI52jJEWZRxEKlWulU9Cp19oKrZQPljTPjFGSyym7Hf-2XfO1p9i7uoyBqsp_UrOPThgwQqD8H1QW0aRmAOcjGLomxo4K13Zl7btvB9wdNLlBkztocqOmoXE9Nkoi-qPH8AchfWAO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25944878</pqid></control><display><type>article</type><title>Beamspace Root-MUSIC</title><source>IEEE Electronic Library (IEL)</source><creator>Zoltowski, M.D. ; Kautz, G.M. ; Silverstein, S.D.</creator><creatorcontrib>Zoltowski, M.D. ; Kautz, G.M. ; Silverstein, S.D.</creatorcontrib><description>Motivated by the superior performance of Root-MUSIC relative to spectral MUSIC and ESPRIT in a uniform linear array scenario and the many advantages of operating in beamspace, a beamspace implementation of Root-MUSIC is developed. To facilitate reduced computational complexity, procedures are presented for designing orthogonal matrix beam-formers composed of conjugate centrosymmetric weight vectors and producing beams exhibiting common out-of-band nulls. It is shown that the former property enables one to work with the real part of the beamspace sample covariance matrix irrespective of the angle-of-arrival estimation algorithm employed. The latter property enables one to work with a reduced degree polynomial in the final stage of Root-MUSIC. The N x B discrete Fourier transform (DFT) matrix beamformer composed of B columns of the N x N DFT matrix, where N is the number of elements, is employed as a prototype matrix beamformer possessing the aforementioned properties. It is used to establish these two results and to derive other matrix beamformers having the desired features plus additional features, such as producing beams with reduced out-of-band sidelobes and/or common nulls at prescribed locations. Simulations are presented comparing the performance of beamspace Root-MUSIC with that of element space Root-MUSIC and that of beamspace spectral MUSIC.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.1993.193151</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational complexity ; Concurrent computing ; Covariance matrix ; Discrete Fourier transforms ; Multiple signal classification ; Performance analysis ; Polynomials ; Prototypes ; Robustness ; Vectors</subject><ispartof>IEEE transactions on signal processing, 1993-01, Vol.41 (1), p.344-364</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-ee493d8304346f4a9ea5be6d43e5eba42cf5d6567167a6692655ac9e60b885303</citedby><cites>FETCH-LOGICAL-c320t-ee493d8304346f4a9ea5be6d43e5eba42cf5d6567167a6692655ac9e60b885303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/193151$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/193151$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zoltowski, M.D.</creatorcontrib><creatorcontrib>Kautz, G.M.</creatorcontrib><creatorcontrib>Silverstein, S.D.</creatorcontrib><title>Beamspace Root-MUSIC</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Motivated by the superior performance of Root-MUSIC relative to spectral MUSIC and ESPRIT in a uniform linear array scenario and the many advantages of operating in beamspace, a beamspace implementation of Root-MUSIC is developed. To facilitate reduced computational complexity, procedures are presented for designing orthogonal matrix beam-formers composed of conjugate centrosymmetric weight vectors and producing beams exhibiting common out-of-band nulls. It is shown that the former property enables one to work with the real part of the beamspace sample covariance matrix irrespective of the angle-of-arrival estimation algorithm employed. The latter property enables one to work with a reduced degree polynomial in the final stage of Root-MUSIC. The N x B discrete Fourier transform (DFT) matrix beamformer composed of B columns of the N x N DFT matrix, where N is the number of elements, is employed as a prototype matrix beamformer possessing the aforementioned properties. It is used to establish these two results and to derive other matrix beamformers having the desired features plus additional features, such as producing beams with reduced out-of-band sidelobes and/or common nulls at prescribed locations. Simulations are presented comparing the performance of beamspace Root-MUSIC with that of element space Root-MUSIC and that of beamspace spectral MUSIC.</description><subject>Computational complexity</subject><subject>Concurrent computing</subject><subject>Covariance matrix</subject><subject>Discrete Fourier transforms</subject><subject>Multiple signal classification</subject><subject>Performance analysis</subject><subject>Polynomials</subject><subject>Prototypes</subject><subject>Robustness</subject><subject>Vectors</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLw0AQRhdRsFZvguDJk7e0O7uzm92jlqqFimJb8LZsNhOIJCZm04P_3pQIHr3MDHzvm8Nj7Ar4DIDb-XbzOgNr5TAkKDhiE7AICcdUHw83VzJRJn0_ZWcxfnAOiFZP2OU9-Tq2PtDNW9P0yfNus1qcs5PCV5EufveU7R6W28VTsn55XC3u1kmQgvcJEVqZG8lRoi7QW_IqI52jJEWZRxEKlWulU9Cp19oKrZQPljTPjFGSyym7Hf-2XfO1p9i7uoyBqsp_UrOPThgwQqD8H1QW0aRmAOcjGLomxo4K13Zl7btvB9wdNLlBkztocqOmoXE9Nkoi-qPH8AchfWAO</recordid><startdate>199301</startdate><enddate>199301</enddate><creator>Zoltowski, M.D.</creator><creator>Kautz, G.M.</creator><creator>Silverstein, S.D.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>199301</creationdate><title>Beamspace Root-MUSIC</title><author>Zoltowski, M.D. ; Kautz, G.M. ; Silverstein, S.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-ee493d8304346f4a9ea5be6d43e5eba42cf5d6567167a6692655ac9e60b885303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Computational complexity</topic><topic>Concurrent computing</topic><topic>Covariance matrix</topic><topic>Discrete Fourier transforms</topic><topic>Multiple signal classification</topic><topic>Performance analysis</topic><topic>Polynomials</topic><topic>Prototypes</topic><topic>Robustness</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zoltowski, M.D.</creatorcontrib><creatorcontrib>Kautz, G.M.</creatorcontrib><creatorcontrib>Silverstein, S.D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zoltowski, M.D.</au><au>Kautz, G.M.</au><au>Silverstein, S.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beamspace Root-MUSIC</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1993-01</date><risdate>1993</risdate><volume>41</volume><issue>1</issue><spage>344</spage><epage>364</epage><pages>344-364</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Motivated by the superior performance of Root-MUSIC relative to spectral MUSIC and ESPRIT in a uniform linear array scenario and the many advantages of operating in beamspace, a beamspace implementation of Root-MUSIC is developed. To facilitate reduced computational complexity, procedures are presented for designing orthogonal matrix beam-formers composed of conjugate centrosymmetric weight vectors and producing beams exhibiting common out-of-band nulls. It is shown that the former property enables one to work with the real part of the beamspace sample covariance matrix irrespective of the angle-of-arrival estimation algorithm employed. The latter property enables one to work with a reduced degree polynomial in the final stage of Root-MUSIC. The N x B discrete Fourier transform (DFT) matrix beamformer composed of B columns of the N x N DFT matrix, where N is the number of elements, is employed as a prototype matrix beamformer possessing the aforementioned properties. It is used to establish these two results and to derive other matrix beamformers having the desired features plus additional features, such as producing beams with reduced out-of-band sidelobes and/or common nulls at prescribed locations. Simulations are presented comparing the performance of beamspace Root-MUSIC with that of element space Root-MUSIC and that of beamspace spectral MUSIC.</abstract><pub>IEEE</pub><doi>10.1109/TSP.1993.193151</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 1993-01, Vol.41 (1), p.344-364 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_miscellaneous_28182243 |
source | IEEE Electronic Library (IEL) |
subjects | Computational complexity Concurrent computing Covariance matrix Discrete Fourier transforms Multiple signal classification Performance analysis Polynomials Prototypes Robustness Vectors |
title | Beamspace Root-MUSIC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beamspace%20Root-MUSIC&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Zoltowski,%20M.D.&rft.date=1993-01&rft.volume=41&rft.issue=1&rft.spage=344&rft.epage=364&rft.pages=344-364&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.1993.193151&rft_dat=%3Cproquest_RIE%3E25944878%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25944878&rft_id=info:pmid/&rft_ieee_id=193151&rfr_iscdi=true |