Data-Driven Prediction of Molecular Biotransformations in Food Fermentation

Fermentation products, together with food components, determine the sense, nutrition, and safety of fermented foods. Traditional methods of fermentation product identification are time-consuming and cumbersome, which cannot meet the increasing need for the identification of the extensive bioactive m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2023-06, Vol.71 (22), p.8488-8496
Hauptverfasser: Zhang, Dachuan, Jia, Cancan, Sun, Dandan, Gao, Chukun, Fu, Dongheng, Cai, Pengli, Hu, Qian-Nan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8496
container_issue 22
container_start_page 8488
container_title Journal of agricultural and food chemistry
container_volume 71
creator Zhang, Dachuan
Jia, Cancan
Sun, Dandan
Gao, Chukun
Fu, Dongheng
Cai, Pengli
Hu, Qian-Nan
description Fermentation products, together with food components, determine the sense, nutrition, and safety of fermented foods. Traditional methods of fermentation product identification are time-consuming and cumbersome, which cannot meet the increasing need for the identification of the extensive bioactive metabolites produced during food fermentation. Hence, we propose a data-driven integrated platform (FFExplorer, http://www.rxnfinder.org/ffexplorer/) based on machine learning and data on 2,192,862 microbial sequence-encoded enzymes for computational prediction of fermentation products. Using FFExplorer, we explained the mechanism behind the disappearance of spicy taste during pepper fermentation and evaluated the detoxification effects of microbial fermentation for common food contaminants. FFExplorer will provide a valuable reference for inferring bioactive “dark matter” in fermented foods and exploring the application potential of microorganisms.
doi_str_mv 10.1021/acs.jafc.3c01172
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2818057587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818057587</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-4d834e9b37bc5c7e3da774500d338e05172739df25c822eff4e41c79685a20e73</originalsourceid><addsrcrecordid>eNp1kDFPwzAQRi0EoqWwM6GMDKSc7bh2RmgpIIpggNlynbOUKonBTpD49yRtYWM66e59n3SPkHMKUwqMXhsbpxvj7JRboFSyAzKmgkEqKFWHZAw9kyoxoyNyEuMGAJSQcExGXDKq8jwbk6eFaU26COUXNslrwKK0bembxLvk2Vdou8qE5Lb0bTBNdD7UZjjHpGySpfdFssRQY9Nut6fkyJkq4tl-Tsj78u5t_pCuXu4f5zer1HA-a9OsUDzDfM3l2gorkRdGykwAFJwrBNH_IXleOCasYgydyzCjVuYzJQwDlHxCLne9H8F_dhhbXZfRYlWZBn0XNVNUgZBCDSjsUBt8jAGd_ghlbcK3pqAHhbpXqAeFeq-wj1zs27t1jcVf4NdZD1ztgG3Ud6Hpn_2_7wdcyHxs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818057587</pqid></control><display><type>article</type><title>Data-Driven Prediction of Molecular Biotransformations in Food Fermentation</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Zhang, Dachuan ; Jia, Cancan ; Sun, Dandan ; Gao, Chukun ; Fu, Dongheng ; Cai, Pengli ; Hu, Qian-Nan</creator><creatorcontrib>Zhang, Dachuan ; Jia, Cancan ; Sun, Dandan ; Gao, Chukun ; Fu, Dongheng ; Cai, Pengli ; Hu, Qian-Nan</creatorcontrib><description>Fermentation products, together with food components, determine the sense, nutrition, and safety of fermented foods. Traditional methods of fermentation product identification are time-consuming and cumbersome, which cannot meet the increasing need for the identification of the extensive bioactive metabolites produced during food fermentation. Hence, we propose a data-driven integrated platform (FFExplorer, http://www.rxnfinder.org/ffexplorer/) based on machine learning and data on 2,192,862 microbial sequence-encoded enzymes for computational prediction of fermentation products. Using FFExplorer, we explained the mechanism behind the disappearance of spicy taste during pepper fermentation and evaluated the detoxification effects of microbial fermentation for common food contaminants. FFExplorer will provide a valuable reference for inferring bioactive “dark matter” in fermented foods and exploring the application potential of microorganisms.</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/acs.jafc.3c01172</identifier><identifier>PMID: 37218994</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biotechnology and Biological Transformations ; Fermentation ; Fermented Foods ; Food ; Food Microbiology</subject><ispartof>Journal of agricultural and food chemistry, 2023-06, Vol.71 (22), p.8488-8496</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-4d834e9b37bc5c7e3da774500d338e05172739df25c822eff4e41c79685a20e73</citedby><cites>FETCH-LOGICAL-a336t-4d834e9b37bc5c7e3da774500d338e05172739df25c822eff4e41c79685a20e73</cites><orcidid>0000-0003-2467-6286 ; 0000-0002-7910-6558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jafc.3c01172$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jafc.3c01172$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2756,27067,27915,27916,56729,56779</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37218994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Dachuan</creatorcontrib><creatorcontrib>Jia, Cancan</creatorcontrib><creatorcontrib>Sun, Dandan</creatorcontrib><creatorcontrib>Gao, Chukun</creatorcontrib><creatorcontrib>Fu, Dongheng</creatorcontrib><creatorcontrib>Cai, Pengli</creatorcontrib><creatorcontrib>Hu, Qian-Nan</creatorcontrib><title>Data-Driven Prediction of Molecular Biotransformations in Food Fermentation</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Fermentation products, together with food components, determine the sense, nutrition, and safety of fermented foods. Traditional methods of fermentation product identification are time-consuming and cumbersome, which cannot meet the increasing need for the identification of the extensive bioactive metabolites produced during food fermentation. Hence, we propose a data-driven integrated platform (FFExplorer, http://www.rxnfinder.org/ffexplorer/) based on machine learning and data on 2,192,862 microbial sequence-encoded enzymes for computational prediction of fermentation products. Using FFExplorer, we explained the mechanism behind the disappearance of spicy taste during pepper fermentation and evaluated the detoxification effects of microbial fermentation for common food contaminants. FFExplorer will provide a valuable reference for inferring bioactive “dark matter” in fermented foods and exploring the application potential of microorganisms.</description><subject>Biotechnology and Biological Transformations</subject><subject>Fermentation</subject><subject>Fermented Foods</subject><subject>Food</subject><subject>Food Microbiology</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDFPwzAQRi0EoqWwM6GMDKSc7bh2RmgpIIpggNlynbOUKonBTpD49yRtYWM66e59n3SPkHMKUwqMXhsbpxvj7JRboFSyAzKmgkEqKFWHZAw9kyoxoyNyEuMGAJSQcExGXDKq8jwbk6eFaU26COUXNslrwKK0bembxLvk2Vdou8qE5Lb0bTBNdD7UZjjHpGySpfdFssRQY9Nut6fkyJkq4tl-Tsj78u5t_pCuXu4f5zer1HA-a9OsUDzDfM3l2gorkRdGykwAFJwrBNH_IXleOCasYgydyzCjVuYzJQwDlHxCLne9H8F_dhhbXZfRYlWZBn0XNVNUgZBCDSjsUBt8jAGd_ghlbcK3pqAHhbpXqAeFeq-wj1zs27t1jcVf4NdZD1ztgG3Ud6Hpn_2_7wdcyHxs</recordid><startdate>20230607</startdate><enddate>20230607</enddate><creator>Zhang, Dachuan</creator><creator>Jia, Cancan</creator><creator>Sun, Dandan</creator><creator>Gao, Chukun</creator><creator>Fu, Dongheng</creator><creator>Cai, Pengli</creator><creator>Hu, Qian-Nan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2467-6286</orcidid><orcidid>https://orcid.org/0000-0002-7910-6558</orcidid></search><sort><creationdate>20230607</creationdate><title>Data-Driven Prediction of Molecular Biotransformations in Food Fermentation</title><author>Zhang, Dachuan ; Jia, Cancan ; Sun, Dandan ; Gao, Chukun ; Fu, Dongheng ; Cai, Pengli ; Hu, Qian-Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-4d834e9b37bc5c7e3da774500d338e05172739df25c822eff4e41c79685a20e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biotechnology and Biological Transformations</topic><topic>Fermentation</topic><topic>Fermented Foods</topic><topic>Food</topic><topic>Food Microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dachuan</creatorcontrib><creatorcontrib>Jia, Cancan</creatorcontrib><creatorcontrib>Sun, Dandan</creatorcontrib><creatorcontrib>Gao, Chukun</creatorcontrib><creatorcontrib>Fu, Dongheng</creatorcontrib><creatorcontrib>Cai, Pengli</creatorcontrib><creatorcontrib>Hu, Qian-Nan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dachuan</au><au>Jia, Cancan</au><au>Sun, Dandan</au><au>Gao, Chukun</au><au>Fu, Dongheng</au><au>Cai, Pengli</au><au>Hu, Qian-Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Prediction of Molecular Biotransformations in Food Fermentation</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2023-06-07</date><risdate>2023</risdate><volume>71</volume><issue>22</issue><spage>8488</spage><epage>8496</epage><pages>8488-8496</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><abstract>Fermentation products, together with food components, determine the sense, nutrition, and safety of fermented foods. Traditional methods of fermentation product identification are time-consuming and cumbersome, which cannot meet the increasing need for the identification of the extensive bioactive metabolites produced during food fermentation. Hence, we propose a data-driven integrated platform (FFExplorer, http://www.rxnfinder.org/ffexplorer/) based on machine learning and data on 2,192,862 microbial sequence-encoded enzymes for computational prediction of fermentation products. Using FFExplorer, we explained the mechanism behind the disappearance of spicy taste during pepper fermentation and evaluated the detoxification effects of microbial fermentation for common food contaminants. FFExplorer will provide a valuable reference for inferring bioactive “dark matter” in fermented foods and exploring the application potential of microorganisms.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37218994</pmid><doi>10.1021/acs.jafc.3c01172</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2467-6286</orcidid><orcidid>https://orcid.org/0000-0002-7910-6558</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8561
ispartof Journal of agricultural and food chemistry, 2023-06, Vol.71 (22), p.8488-8496
issn 0021-8561
1520-5118
language eng
recordid cdi_proquest_miscellaneous_2818057587
source MEDLINE; American Chemical Society Journals
subjects Biotechnology and Biological Transformations
Fermentation
Fermented Foods
Food
Food Microbiology
title Data-Driven Prediction of Molecular Biotransformations in Food Fermentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Prediction%20of%20Molecular%20Biotransformations%20in%20Food%20Fermentation&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Zhang,%20Dachuan&rft.date=2023-06-07&rft.volume=71&rft.issue=22&rft.spage=8488&rft.epage=8496&rft.pages=8488-8496&rft.issn=0021-8561&rft.eissn=1520-5118&rft_id=info:doi/10.1021/acs.jafc.3c01172&rft_dat=%3Cproquest_cross%3E2818057587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818057587&rft_id=info:pmid/37218994&rfr_iscdi=true