Weavable yarn-shaped supercapacitor in sweat-activated self-charging power textile for wireless sweat biosensing
The yarn-based sweat-activated battery (SAB) is a promising energy source for textile electronics due to its excellent skin compatibility, great weavability, and stable electric output. However, its power density is too low to support real-time monitoring and wireless data transmission. Here, we dev...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2023-09, Vol.235, p.115389-115389, Article 115389 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The yarn-based sweat-activated battery (SAB) is a promising energy source for textile electronics due to its excellent skin compatibility, great weavability, and stable electric output. However, its power density is too low to support real-time monitoring and wireless data transmission. Here, we developed a scalable, high-performance sweat-based yarn biosupercapacitor (SYBSC) with two symmetrically aligned electrodes made by wrapping hydrophilic cotton fibers on polypyrrole/poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate)-modified stainless steel yarns. Once activated with artificial sweat, the SYBSC could offer a high areal capacitance of 343.1 mF cm−2 at 0.5 mA cm−2. After 10,000 times of bending under continuous charge-discharge cycles and 25 cycles of machine washing, the device could retain the capacitance at rates of 68% and 73%, respectively. The SYBSCs were integrated with yarn-shaped SABs to produce hybrid self-charging power units. The hybrid units, pH sensing fibers, and a mini-analyzer were woven into a sweat-activated all-in-one sensing textile, in which the hybrid, self-charging units could power the analyzer for real-time data collection and wireless transmission. The all-in-one electronic textile could be successfully employed to real-time monitor the pH values of the volunteers’ sweat during exercise. This work can promote the development of self-charging electronic textiles for monitoring human healthcare and exercise intensity.
[Display omitted] |
---|---|
ISSN: | 0956-5663 1873-4235 |
DOI: | 10.1016/j.bios.2023.115389 |