Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors

Three-dimensional monolithic integration of memory devices with logic transistors is a frontier challenge in computer hardware. This integration is essential for augmenting computational power concurrent with enhanced energy efficiency in big data applications such as artificial intelligence. Despit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2023-09, Vol.18 (9), p.1044-1050
Hauptverfasser: Kim, Kwan-Ho, Oh, Seyong, Fiagbenu, Merrilyn Mercy Adzo, Zheng, Jeffrey, Musavigharavi, Pariasadat, Kumar, Pawan, Trainor, Nicholas, Aljarb, Areej, Wan, Yi, Kim, Hyong Min, Katti, Keshava, Song, Seunguk, Kim, Gwangwoo, Tang, Zichen, Fu, Jui-Han, Hakami, Mariam, Tung, Vincent, Redwing, Joan M., Stach, Eric A., Olsson, Roy H., Jariwala, Deep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1050
container_issue 9
container_start_page 1044
container_title Nature nanotechnology
container_volume 18
creator Kim, Kwan-Ho
Oh, Seyong
Fiagbenu, Merrilyn Mercy Adzo
Zheng, Jeffrey
Musavigharavi, Pariasadat
Kumar, Pawan
Trainor, Nicholas
Aljarb, Areej
Wan, Yi
Kim, Hyong Min
Katti, Keshava
Song, Seunguk
Kim, Gwangwoo
Tang, Zichen
Fu, Jui-Han
Hakami, Mariam
Tung, Vincent
Redwing, Joan M.
Stach, Eric A.
Olsson, Roy H.
Jariwala, Deep
description Three-dimensional monolithic integration of memory devices with logic transistors is a frontier challenge in computer hardware. This integration is essential for augmenting computational power concurrent with enhanced energy efficiency in big data applications such as artificial intelligence. Despite decades of efforts, there remains an urgent need for reliable, compact, fast, energy-efficient and scalable memory devices. Ferroelectric field-effect transistors (FE-FETs) are a promising candidate, but requisite scalability and performance in a back-end-of-line process have proven challenging. Here we present back-end-of-line-compatible FE-FETs using two-dimensional MoS 2 channels and AlScN ferroelectric materials, all grown via wafer-scalable processes. A large array of FE-FETs with memory windows larger than 7.8 V, ON/OFF ratios greater than 10 7 and ON-current density greater than 250 μA um –1 , all at ~80 nm channel length are demonstrated. The FE-FETs show stable retention up to 10 years by extension, and endurance greater than 10 4  cycles in addition to 4-bit pulse-programmable memory features, thereby opening a path towards the three-dimensional heterointegration of a two-dimensional semiconductor memory with silicon complementary metal–oxide–semiconductor logic. A large array of ferroelectric field-effect transistors with record memory windows, ON/OFF ratios and ON-current density is presented at ~80 nm channel length.
doi_str_mv 10.1038/s41565-023-01399-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2818053630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864705654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-19ffc287f5fc21109f42cfc504f144a5e37f01a94612a58aeade0db4b565bed63</originalsourceid><addsrcrecordid>eNp9kU1P5DAMhiO0CFjgD3BAlfbCJZDPpj2iEbBIfBwGzlGaOlBIk9mko9X8ezI7fEh74GRbfvxa9ovQESWnlPDmLAsqa4kJ45hQ3rZ4tYX2qBIN5ryVPz7zRu2inzm_ECJZy8QO2uWKUaVqsYfC3BpvOg_V7PZ-XnXGvmIIPY4O-yEAtnFcmGlYA-d-bu_Opr8R98MIIQ8xGF_ZZxMC-MpBShE82CkNtnID-B6Dc6WupmQKnaeY8gHadsZnOHyP--jx8uJh9hvf3F9dz85vsOVKTpi2zlnWKCdLoJS0TjDrrCTCUSGMBK4coaYVNWVGNgZMD6TvRFf-0UFf8310stFdpPhnCXnS45AteG8CxGXWrKENkbzmpKC__kNf4jKV09ZULRQpmqJQbEPZFHNO4PQiDaNJK02JXruhN27o4ob-54ZelaHjd-llN0L_OfLx_gLwDZBLKzxB-tr9jewb68eWxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864705654</pqid></control><display><type>article</type><title>Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Kim, Kwan-Ho ; Oh, Seyong ; Fiagbenu, Merrilyn Mercy Adzo ; Zheng, Jeffrey ; Musavigharavi, Pariasadat ; Kumar, Pawan ; Trainor, Nicholas ; Aljarb, Areej ; Wan, Yi ; Kim, Hyong Min ; Katti, Keshava ; Song, Seunguk ; Kim, Gwangwoo ; Tang, Zichen ; Fu, Jui-Han ; Hakami, Mariam ; Tung, Vincent ; Redwing, Joan M. ; Stach, Eric A. ; Olsson, Roy H. ; Jariwala, Deep</creator><creatorcontrib>Kim, Kwan-Ho ; Oh, Seyong ; Fiagbenu, Merrilyn Mercy Adzo ; Zheng, Jeffrey ; Musavigharavi, Pariasadat ; Kumar, Pawan ; Trainor, Nicholas ; Aljarb, Areej ; Wan, Yi ; Kim, Hyong Min ; Katti, Keshava ; Song, Seunguk ; Kim, Gwangwoo ; Tang, Zichen ; Fu, Jui-Han ; Hakami, Mariam ; Tung, Vincent ; Redwing, Joan M. ; Stach, Eric A. ; Olsson, Roy H. ; Jariwala, Deep</creatorcontrib><description>Three-dimensional monolithic integration of memory devices with logic transistors is a frontier challenge in computer hardware. This integration is essential for augmenting computational power concurrent with enhanced energy efficiency in big data applications such as artificial intelligence. Despite decades of efforts, there remains an urgent need for reliable, compact, fast, energy-efficient and scalable memory devices. Ferroelectric field-effect transistors (FE-FETs) are a promising candidate, but requisite scalability and performance in a back-end-of-line process have proven challenging. Here we present back-end-of-line-compatible FE-FETs using two-dimensional MoS 2 channels and AlScN ferroelectric materials, all grown via wafer-scalable processes. A large array of FE-FETs with memory windows larger than 7.8 V, ON/OFF ratios greater than 10 7 and ON-current density greater than 250 μA um –1 , all at ~80 nm channel length are demonstrated. The FE-FETs show stable retention up to 10 years by extension, and endurance greater than 10 4  cycles in addition to 4-bit pulse-programmable memory features, thereby opening a path towards the three-dimensional heterointegration of a two-dimensional semiconductor memory with silicon complementary metal–oxide–semiconductor logic. A large array of ferroelectric field-effect transistors with record memory windows, ON/OFF ratios and ON-current density is presented at ~80 nm channel length.</description><identifier>ISSN: 1748-3387</identifier><identifier>ISSN: 1748-3395</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-023-01399-y</identifier><identifier>PMID: 37217764</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/301/1005/1008 ; 639/301/357/1018 ; 639/925/357/1018 ; 639/925/927/1007 ; Arrays ; Artificial intelligence ; Chemistry and Materials Science ; CMOS ; Current density ; Energy efficiency ; Ferroelectric materials ; Ferroelectricity ; Field effect transistors ; Low dimensional semiconductors ; Materials Science ; Memory devices ; Molybdenum disulfide ; Nanotechnology ; Nanotechnology and Microengineering ; Semiconductor devices ; Transistors</subject><ispartof>Nature nanotechnology, 2023-09, Vol.18 (9), p.1044-1050</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-19ffc287f5fc21109f42cfc504f144a5e37f01a94612a58aeade0db4b565bed63</citedby><cites>FETCH-LOGICAL-c375t-19ffc287f5fc21109f42cfc504f144a5e37f01a94612a58aeade0db4b565bed63</cites><orcidid>0000-0003-3332-9454 ; 0000-0002-7075-9704 ; 0000-0002-7906-452X ; 0000-0002-8716-4600 ; 0000-0002-3570-8768 ; 0000-0001-5875-708X ; 0000-0002-3366-2153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-023-01399-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-023-01399-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37217764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Kwan-Ho</creatorcontrib><creatorcontrib>Oh, Seyong</creatorcontrib><creatorcontrib>Fiagbenu, Merrilyn Mercy Adzo</creatorcontrib><creatorcontrib>Zheng, Jeffrey</creatorcontrib><creatorcontrib>Musavigharavi, Pariasadat</creatorcontrib><creatorcontrib>Kumar, Pawan</creatorcontrib><creatorcontrib>Trainor, Nicholas</creatorcontrib><creatorcontrib>Aljarb, Areej</creatorcontrib><creatorcontrib>Wan, Yi</creatorcontrib><creatorcontrib>Kim, Hyong Min</creatorcontrib><creatorcontrib>Katti, Keshava</creatorcontrib><creatorcontrib>Song, Seunguk</creatorcontrib><creatorcontrib>Kim, Gwangwoo</creatorcontrib><creatorcontrib>Tang, Zichen</creatorcontrib><creatorcontrib>Fu, Jui-Han</creatorcontrib><creatorcontrib>Hakami, Mariam</creatorcontrib><creatorcontrib>Tung, Vincent</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Olsson, Roy H.</creatorcontrib><creatorcontrib>Jariwala, Deep</creatorcontrib><title>Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Three-dimensional monolithic integration of memory devices with logic transistors is a frontier challenge in computer hardware. This integration is essential for augmenting computational power concurrent with enhanced energy efficiency in big data applications such as artificial intelligence. Despite decades of efforts, there remains an urgent need for reliable, compact, fast, energy-efficient and scalable memory devices. Ferroelectric field-effect transistors (FE-FETs) are a promising candidate, but requisite scalability and performance in a back-end-of-line process have proven challenging. Here we present back-end-of-line-compatible FE-FETs using two-dimensional MoS 2 channels and AlScN ferroelectric materials, all grown via wafer-scalable processes. A large array of FE-FETs with memory windows larger than 7.8 V, ON/OFF ratios greater than 10 7 and ON-current density greater than 250 μA um –1 , all at ~80 nm channel length are demonstrated. The FE-FETs show stable retention up to 10 years by extension, and endurance greater than 10 4  cycles in addition to 4-bit pulse-programmable memory features, thereby opening a path towards the three-dimensional heterointegration of a two-dimensional semiconductor memory with silicon complementary metal–oxide–semiconductor logic. A large array of ferroelectric field-effect transistors with record memory windows, ON/OFF ratios and ON-current density is presented at ~80 nm channel length.</description><subject>639/166/987</subject><subject>639/301/1005/1008</subject><subject>639/301/357/1018</subject><subject>639/925/357/1018</subject><subject>639/925/927/1007</subject><subject>Arrays</subject><subject>Artificial intelligence</subject><subject>Chemistry and Materials Science</subject><subject>CMOS</subject><subject>Current density</subject><subject>Energy efficiency</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Field effect transistors</subject><subject>Low dimensional semiconductors</subject><subject>Materials Science</subject><subject>Memory devices</subject><subject>Molybdenum disulfide</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Semiconductor devices</subject><subject>Transistors</subject><issn>1748-3387</issn><issn>1748-3395</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1P5DAMhiO0CFjgD3BAlfbCJZDPpj2iEbBIfBwGzlGaOlBIk9mko9X8ezI7fEh74GRbfvxa9ovQESWnlPDmLAsqa4kJ45hQ3rZ4tYX2qBIN5ryVPz7zRu2inzm_ECJZy8QO2uWKUaVqsYfC3BpvOg_V7PZ-XnXGvmIIPY4O-yEAtnFcmGlYA-d-bu_Opr8R98MIIQ8xGF_ZZxMC-MpBShE82CkNtnID-B6Dc6WupmQKnaeY8gHadsZnOHyP--jx8uJh9hvf3F9dz85vsOVKTpi2zlnWKCdLoJS0TjDrrCTCUSGMBK4coaYVNWVGNgZMD6TvRFf-0UFf8310stFdpPhnCXnS45AteG8CxGXWrKENkbzmpKC__kNf4jKV09ZULRQpmqJQbEPZFHNO4PQiDaNJK02JXruhN27o4ob-54ZelaHjd-llN0L_OfLx_gLwDZBLKzxB-tr9jewb68eWxg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Kim, Kwan-Ho</creator><creator>Oh, Seyong</creator><creator>Fiagbenu, Merrilyn Mercy Adzo</creator><creator>Zheng, Jeffrey</creator><creator>Musavigharavi, Pariasadat</creator><creator>Kumar, Pawan</creator><creator>Trainor, Nicholas</creator><creator>Aljarb, Areej</creator><creator>Wan, Yi</creator><creator>Kim, Hyong Min</creator><creator>Katti, Keshava</creator><creator>Song, Seunguk</creator><creator>Kim, Gwangwoo</creator><creator>Tang, Zichen</creator><creator>Fu, Jui-Han</creator><creator>Hakami, Mariam</creator><creator>Tung, Vincent</creator><creator>Redwing, Joan M.</creator><creator>Stach, Eric A.</creator><creator>Olsson, Roy H.</creator><creator>Jariwala, Deep</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3332-9454</orcidid><orcidid>https://orcid.org/0000-0002-7075-9704</orcidid><orcidid>https://orcid.org/0000-0002-7906-452X</orcidid><orcidid>https://orcid.org/0000-0002-8716-4600</orcidid><orcidid>https://orcid.org/0000-0002-3570-8768</orcidid><orcidid>https://orcid.org/0000-0001-5875-708X</orcidid><orcidid>https://orcid.org/0000-0002-3366-2153</orcidid></search><sort><creationdate>20230901</creationdate><title>Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors</title><author>Kim, Kwan-Ho ; Oh, Seyong ; Fiagbenu, Merrilyn Mercy Adzo ; Zheng, Jeffrey ; Musavigharavi, Pariasadat ; Kumar, Pawan ; Trainor, Nicholas ; Aljarb, Areej ; Wan, Yi ; Kim, Hyong Min ; Katti, Keshava ; Song, Seunguk ; Kim, Gwangwoo ; Tang, Zichen ; Fu, Jui-Han ; Hakami, Mariam ; Tung, Vincent ; Redwing, Joan M. ; Stach, Eric A. ; Olsson, Roy H. ; Jariwala, Deep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-19ffc287f5fc21109f42cfc504f144a5e37f01a94612a58aeade0db4b565bed63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/166/987</topic><topic>639/301/1005/1008</topic><topic>639/301/357/1018</topic><topic>639/925/357/1018</topic><topic>639/925/927/1007</topic><topic>Arrays</topic><topic>Artificial intelligence</topic><topic>Chemistry and Materials Science</topic><topic>CMOS</topic><topic>Current density</topic><topic>Energy efficiency</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Field effect transistors</topic><topic>Low dimensional semiconductors</topic><topic>Materials Science</topic><topic>Memory devices</topic><topic>Molybdenum disulfide</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Semiconductor devices</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kwan-Ho</creatorcontrib><creatorcontrib>Oh, Seyong</creatorcontrib><creatorcontrib>Fiagbenu, Merrilyn Mercy Adzo</creatorcontrib><creatorcontrib>Zheng, Jeffrey</creatorcontrib><creatorcontrib>Musavigharavi, Pariasadat</creatorcontrib><creatorcontrib>Kumar, Pawan</creatorcontrib><creatorcontrib>Trainor, Nicholas</creatorcontrib><creatorcontrib>Aljarb, Areej</creatorcontrib><creatorcontrib>Wan, Yi</creatorcontrib><creatorcontrib>Kim, Hyong Min</creatorcontrib><creatorcontrib>Katti, Keshava</creatorcontrib><creatorcontrib>Song, Seunguk</creatorcontrib><creatorcontrib>Kim, Gwangwoo</creatorcontrib><creatorcontrib>Tang, Zichen</creatorcontrib><creatorcontrib>Fu, Jui-Han</creatorcontrib><creatorcontrib>Hakami, Mariam</creatorcontrib><creatorcontrib>Tung, Vincent</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Olsson, Roy H.</creatorcontrib><creatorcontrib>Jariwala, Deep</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kwan-Ho</au><au>Oh, Seyong</au><au>Fiagbenu, Merrilyn Mercy Adzo</au><au>Zheng, Jeffrey</au><au>Musavigharavi, Pariasadat</au><au>Kumar, Pawan</au><au>Trainor, Nicholas</au><au>Aljarb, Areej</au><au>Wan, Yi</au><au>Kim, Hyong Min</au><au>Katti, Keshava</au><au>Song, Seunguk</au><au>Kim, Gwangwoo</au><au>Tang, Zichen</au><au>Fu, Jui-Han</au><au>Hakami, Mariam</au><au>Tung, Vincent</au><au>Redwing, Joan M.</au><au>Stach, Eric A.</au><au>Olsson, Roy H.</au><au>Jariwala, Deep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>18</volume><issue>9</issue><spage>1044</spage><epage>1050</epage><pages>1044-1050</pages><issn>1748-3387</issn><issn>1748-3395</issn><eissn>1748-3395</eissn><abstract>Three-dimensional monolithic integration of memory devices with logic transistors is a frontier challenge in computer hardware. This integration is essential for augmenting computational power concurrent with enhanced energy efficiency in big data applications such as artificial intelligence. Despite decades of efforts, there remains an urgent need for reliable, compact, fast, energy-efficient and scalable memory devices. Ferroelectric field-effect transistors (FE-FETs) are a promising candidate, but requisite scalability and performance in a back-end-of-line process have proven challenging. Here we present back-end-of-line-compatible FE-FETs using two-dimensional MoS 2 channels and AlScN ferroelectric materials, all grown via wafer-scalable processes. A large array of FE-FETs with memory windows larger than 7.8 V, ON/OFF ratios greater than 10 7 and ON-current density greater than 250 μA um –1 , all at ~80 nm channel length are demonstrated. The FE-FETs show stable retention up to 10 years by extension, and endurance greater than 10 4  cycles in addition to 4-bit pulse-programmable memory features, thereby opening a path towards the three-dimensional heterointegration of a two-dimensional semiconductor memory with silicon complementary metal–oxide–semiconductor logic. A large array of ferroelectric field-effect transistors with record memory windows, ON/OFF ratios and ON-current density is presented at ~80 nm channel length.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37217764</pmid><doi>10.1038/s41565-023-01399-y</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3332-9454</orcidid><orcidid>https://orcid.org/0000-0002-7075-9704</orcidid><orcidid>https://orcid.org/0000-0002-7906-452X</orcidid><orcidid>https://orcid.org/0000-0002-8716-4600</orcidid><orcidid>https://orcid.org/0000-0002-3570-8768</orcidid><orcidid>https://orcid.org/0000-0001-5875-708X</orcidid><orcidid>https://orcid.org/0000-0002-3366-2153</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2023-09, Vol.18 (9), p.1044-1050
issn 1748-3387
1748-3395
1748-3395
language eng
recordid cdi_proquest_miscellaneous_2818053630
source Springer Nature - Complete Springer Journals; Nature
subjects 639/166/987
639/301/1005/1008
639/301/357/1018
639/925/357/1018
639/925/927/1007
Arrays
Artificial intelligence
Chemistry and Materials Science
CMOS
Current density
Energy efficiency
Ferroelectric materials
Ferroelectricity
Field effect transistors
Low dimensional semiconductors
Materials Science
Memory devices
Molybdenum disulfide
Nanotechnology
Nanotechnology and Microengineering
Semiconductor devices
Transistors
title Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A18%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20CMOS%20back-end-of-line-compatible%20AlScN/two-dimensional%20channel%20ferroelectric%20field-effect%20transistors&rft.jtitle=Nature%20nanotechnology&rft.au=Kim,%20Kwan-Ho&rft.date=2023-09-01&rft.volume=18&rft.issue=9&rft.spage=1044&rft.epage=1050&rft.pages=1044-1050&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-023-01399-y&rft_dat=%3Cproquest_cross%3E2864705654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864705654&rft_id=info:pmid/37217764&rfr_iscdi=true