Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors
Three-dimensional monolithic integration of memory devices with logic transistors is a frontier challenge in computer hardware. This integration is essential for augmenting computational power concurrent with enhanced energy efficiency in big data applications such as artificial intelligence. Despit...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2023-09, Vol.18 (9), p.1044-1050 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1050 |
---|---|
container_issue | 9 |
container_start_page | 1044 |
container_title | Nature nanotechnology |
container_volume | 18 |
creator | Kim, Kwan-Ho Oh, Seyong Fiagbenu, Merrilyn Mercy Adzo Zheng, Jeffrey Musavigharavi, Pariasadat Kumar, Pawan Trainor, Nicholas Aljarb, Areej Wan, Yi Kim, Hyong Min Katti, Keshava Song, Seunguk Kim, Gwangwoo Tang, Zichen Fu, Jui-Han Hakami, Mariam Tung, Vincent Redwing, Joan M. Stach, Eric A. Olsson, Roy H. Jariwala, Deep |
description | Three-dimensional monolithic integration of memory devices with logic transistors is a frontier challenge in computer hardware. This integration is essential for augmenting computational power concurrent with enhanced energy efficiency in big data applications such as artificial intelligence. Despite decades of efforts, there remains an urgent need for reliable, compact, fast, energy-efficient and scalable memory devices. Ferroelectric field-effect transistors (FE-FETs) are a promising candidate, but requisite scalability and performance in a back-end-of-line process have proven challenging. Here we present back-end-of-line-compatible FE-FETs using two-dimensional MoS
2
channels and AlScN ferroelectric materials, all grown via wafer-scalable processes. A large array of FE-FETs with memory windows larger than 7.8 V, ON/OFF ratios greater than 10
7
and ON-current density greater than 250 μA um
–1
, all at ~80 nm channel length are demonstrated. The FE-FETs show stable retention up to 10 years by extension, and endurance greater than 10
4
cycles in addition to 4-bit pulse-programmable memory features, thereby opening a path towards the three-dimensional heterointegration of a two-dimensional semiconductor memory with silicon complementary metal–oxide–semiconductor logic.
A large array of ferroelectric field-effect transistors with record memory windows, ON/OFF ratios and ON-current density is presented at ~80 nm channel length. |
doi_str_mv | 10.1038/s41565-023-01399-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2818053630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864705654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-19ffc287f5fc21109f42cfc504f144a5e37f01a94612a58aeade0db4b565bed63</originalsourceid><addsrcrecordid>eNp9kU1P5DAMhiO0CFjgD3BAlfbCJZDPpj2iEbBIfBwGzlGaOlBIk9mko9X8ezI7fEh74GRbfvxa9ovQESWnlPDmLAsqa4kJ45hQ3rZ4tYX2qBIN5ryVPz7zRu2inzm_ECJZy8QO2uWKUaVqsYfC3BpvOg_V7PZ-XnXGvmIIPY4O-yEAtnFcmGlYA-d-bu_Opr8R98MIIQ8xGF_ZZxMC-MpBShE82CkNtnID-B6Dc6WupmQKnaeY8gHadsZnOHyP--jx8uJh9hvf3F9dz85vsOVKTpi2zlnWKCdLoJS0TjDrrCTCUSGMBK4coaYVNWVGNgZMD6TvRFf-0UFf8310stFdpPhnCXnS45AteG8CxGXWrKENkbzmpKC__kNf4jKV09ZULRQpmqJQbEPZFHNO4PQiDaNJK02JXruhN27o4ob-54ZelaHjd-llN0L_OfLx_gLwDZBLKzxB-tr9jewb68eWxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864705654</pqid></control><display><type>article</type><title>Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Kim, Kwan-Ho ; Oh, Seyong ; Fiagbenu, Merrilyn Mercy Adzo ; Zheng, Jeffrey ; Musavigharavi, Pariasadat ; Kumar, Pawan ; Trainor, Nicholas ; Aljarb, Areej ; Wan, Yi ; Kim, Hyong Min ; Katti, Keshava ; Song, Seunguk ; Kim, Gwangwoo ; Tang, Zichen ; Fu, Jui-Han ; Hakami, Mariam ; Tung, Vincent ; Redwing, Joan M. ; Stach, Eric A. ; Olsson, Roy H. ; Jariwala, Deep</creator><creatorcontrib>Kim, Kwan-Ho ; Oh, Seyong ; Fiagbenu, Merrilyn Mercy Adzo ; Zheng, Jeffrey ; Musavigharavi, Pariasadat ; Kumar, Pawan ; Trainor, Nicholas ; Aljarb, Areej ; Wan, Yi ; Kim, Hyong Min ; Katti, Keshava ; Song, Seunguk ; Kim, Gwangwoo ; Tang, Zichen ; Fu, Jui-Han ; Hakami, Mariam ; Tung, Vincent ; Redwing, Joan M. ; Stach, Eric A. ; Olsson, Roy H. ; Jariwala, Deep</creatorcontrib><description>Three-dimensional monolithic integration of memory devices with logic transistors is a frontier challenge in computer hardware. This integration is essential for augmenting computational power concurrent with enhanced energy efficiency in big data applications such as artificial intelligence. Despite decades of efforts, there remains an urgent need for reliable, compact, fast, energy-efficient and scalable memory devices. Ferroelectric field-effect transistors (FE-FETs) are a promising candidate, but requisite scalability and performance in a back-end-of-line process have proven challenging. Here we present back-end-of-line-compatible FE-FETs using two-dimensional MoS
2
channels and AlScN ferroelectric materials, all grown via wafer-scalable processes. A large array of FE-FETs with memory windows larger than 7.8 V, ON/OFF ratios greater than 10
7
and ON-current density greater than 250 μA um
–1
, all at ~80 nm channel length are demonstrated. The FE-FETs show stable retention up to 10 years by extension, and endurance greater than 10
4
cycles in addition to 4-bit pulse-programmable memory features, thereby opening a path towards the three-dimensional heterointegration of a two-dimensional semiconductor memory with silicon complementary metal–oxide–semiconductor logic.
A large array of ferroelectric field-effect transistors with record memory windows, ON/OFF ratios and ON-current density is presented at ~80 nm channel length.</description><identifier>ISSN: 1748-3387</identifier><identifier>ISSN: 1748-3395</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-023-01399-y</identifier><identifier>PMID: 37217764</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/301/1005/1008 ; 639/301/357/1018 ; 639/925/357/1018 ; 639/925/927/1007 ; Arrays ; Artificial intelligence ; Chemistry and Materials Science ; CMOS ; Current density ; Energy efficiency ; Ferroelectric materials ; Ferroelectricity ; Field effect transistors ; Low dimensional semiconductors ; Materials Science ; Memory devices ; Molybdenum disulfide ; Nanotechnology ; Nanotechnology and Microengineering ; Semiconductor devices ; Transistors</subject><ispartof>Nature nanotechnology, 2023-09, Vol.18 (9), p.1044-1050</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-19ffc287f5fc21109f42cfc504f144a5e37f01a94612a58aeade0db4b565bed63</citedby><cites>FETCH-LOGICAL-c375t-19ffc287f5fc21109f42cfc504f144a5e37f01a94612a58aeade0db4b565bed63</cites><orcidid>0000-0003-3332-9454 ; 0000-0002-7075-9704 ; 0000-0002-7906-452X ; 0000-0002-8716-4600 ; 0000-0002-3570-8768 ; 0000-0001-5875-708X ; 0000-0002-3366-2153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-023-01399-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-023-01399-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37217764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Kwan-Ho</creatorcontrib><creatorcontrib>Oh, Seyong</creatorcontrib><creatorcontrib>Fiagbenu, Merrilyn Mercy Adzo</creatorcontrib><creatorcontrib>Zheng, Jeffrey</creatorcontrib><creatorcontrib>Musavigharavi, Pariasadat</creatorcontrib><creatorcontrib>Kumar, Pawan</creatorcontrib><creatorcontrib>Trainor, Nicholas</creatorcontrib><creatorcontrib>Aljarb, Areej</creatorcontrib><creatorcontrib>Wan, Yi</creatorcontrib><creatorcontrib>Kim, Hyong Min</creatorcontrib><creatorcontrib>Katti, Keshava</creatorcontrib><creatorcontrib>Song, Seunguk</creatorcontrib><creatorcontrib>Kim, Gwangwoo</creatorcontrib><creatorcontrib>Tang, Zichen</creatorcontrib><creatorcontrib>Fu, Jui-Han</creatorcontrib><creatorcontrib>Hakami, Mariam</creatorcontrib><creatorcontrib>Tung, Vincent</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Olsson, Roy H.</creatorcontrib><creatorcontrib>Jariwala, Deep</creatorcontrib><title>Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Three-dimensional monolithic integration of memory devices with logic transistors is a frontier challenge in computer hardware. This integration is essential for augmenting computational power concurrent with enhanced energy efficiency in big data applications such as artificial intelligence. Despite decades of efforts, there remains an urgent need for reliable, compact, fast, energy-efficient and scalable memory devices. Ferroelectric field-effect transistors (FE-FETs) are a promising candidate, but requisite scalability and performance in a back-end-of-line process have proven challenging. Here we present back-end-of-line-compatible FE-FETs using two-dimensional MoS
2
channels and AlScN ferroelectric materials, all grown via wafer-scalable processes. A large array of FE-FETs with memory windows larger than 7.8 V, ON/OFF ratios greater than 10
7
and ON-current density greater than 250 μA um
–1
, all at ~80 nm channel length are demonstrated. The FE-FETs show stable retention up to 10 years by extension, and endurance greater than 10
4
cycles in addition to 4-bit pulse-programmable memory features, thereby opening a path towards the three-dimensional heterointegration of a two-dimensional semiconductor memory with silicon complementary metal–oxide–semiconductor logic.
A large array of ferroelectric field-effect transistors with record memory windows, ON/OFF ratios and ON-current density is presented at ~80 nm channel length.</description><subject>639/166/987</subject><subject>639/301/1005/1008</subject><subject>639/301/357/1018</subject><subject>639/925/357/1018</subject><subject>639/925/927/1007</subject><subject>Arrays</subject><subject>Artificial intelligence</subject><subject>Chemistry and Materials Science</subject><subject>CMOS</subject><subject>Current density</subject><subject>Energy efficiency</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Field effect transistors</subject><subject>Low dimensional semiconductors</subject><subject>Materials Science</subject><subject>Memory devices</subject><subject>Molybdenum disulfide</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Semiconductor devices</subject><subject>Transistors</subject><issn>1748-3387</issn><issn>1748-3395</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1P5DAMhiO0CFjgD3BAlfbCJZDPpj2iEbBIfBwGzlGaOlBIk9mko9X8ezI7fEh74GRbfvxa9ovQESWnlPDmLAsqa4kJ45hQ3rZ4tYX2qBIN5ryVPz7zRu2inzm_ECJZy8QO2uWKUaVqsYfC3BpvOg_V7PZ-XnXGvmIIPY4O-yEAtnFcmGlYA-d-bu_Opr8R98MIIQ8xGF_ZZxMC-MpBShE82CkNtnID-B6Dc6WupmQKnaeY8gHadsZnOHyP--jx8uJh9hvf3F9dz85vsOVKTpi2zlnWKCdLoJS0TjDrrCTCUSGMBK4coaYVNWVGNgZMD6TvRFf-0UFf8310stFdpPhnCXnS45AteG8CxGXWrKENkbzmpKC__kNf4jKV09ZULRQpmqJQbEPZFHNO4PQiDaNJK02JXruhN27o4ob-54ZelaHjd-llN0L_OfLx_gLwDZBLKzxB-tr9jewb68eWxg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Kim, Kwan-Ho</creator><creator>Oh, Seyong</creator><creator>Fiagbenu, Merrilyn Mercy Adzo</creator><creator>Zheng, Jeffrey</creator><creator>Musavigharavi, Pariasadat</creator><creator>Kumar, Pawan</creator><creator>Trainor, Nicholas</creator><creator>Aljarb, Areej</creator><creator>Wan, Yi</creator><creator>Kim, Hyong Min</creator><creator>Katti, Keshava</creator><creator>Song, Seunguk</creator><creator>Kim, Gwangwoo</creator><creator>Tang, Zichen</creator><creator>Fu, Jui-Han</creator><creator>Hakami, Mariam</creator><creator>Tung, Vincent</creator><creator>Redwing, Joan M.</creator><creator>Stach, Eric A.</creator><creator>Olsson, Roy H.</creator><creator>Jariwala, Deep</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3332-9454</orcidid><orcidid>https://orcid.org/0000-0002-7075-9704</orcidid><orcidid>https://orcid.org/0000-0002-7906-452X</orcidid><orcidid>https://orcid.org/0000-0002-8716-4600</orcidid><orcidid>https://orcid.org/0000-0002-3570-8768</orcidid><orcidid>https://orcid.org/0000-0001-5875-708X</orcidid><orcidid>https://orcid.org/0000-0002-3366-2153</orcidid></search><sort><creationdate>20230901</creationdate><title>Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors</title><author>Kim, Kwan-Ho ; Oh, Seyong ; Fiagbenu, Merrilyn Mercy Adzo ; Zheng, Jeffrey ; Musavigharavi, Pariasadat ; Kumar, Pawan ; Trainor, Nicholas ; Aljarb, Areej ; Wan, Yi ; Kim, Hyong Min ; Katti, Keshava ; Song, Seunguk ; Kim, Gwangwoo ; Tang, Zichen ; Fu, Jui-Han ; Hakami, Mariam ; Tung, Vincent ; Redwing, Joan M. ; Stach, Eric A. ; Olsson, Roy H. ; Jariwala, Deep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-19ffc287f5fc21109f42cfc504f144a5e37f01a94612a58aeade0db4b565bed63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/166/987</topic><topic>639/301/1005/1008</topic><topic>639/301/357/1018</topic><topic>639/925/357/1018</topic><topic>639/925/927/1007</topic><topic>Arrays</topic><topic>Artificial intelligence</topic><topic>Chemistry and Materials Science</topic><topic>CMOS</topic><topic>Current density</topic><topic>Energy efficiency</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Field effect transistors</topic><topic>Low dimensional semiconductors</topic><topic>Materials Science</topic><topic>Memory devices</topic><topic>Molybdenum disulfide</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Semiconductor devices</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kwan-Ho</creatorcontrib><creatorcontrib>Oh, Seyong</creatorcontrib><creatorcontrib>Fiagbenu, Merrilyn Mercy Adzo</creatorcontrib><creatorcontrib>Zheng, Jeffrey</creatorcontrib><creatorcontrib>Musavigharavi, Pariasadat</creatorcontrib><creatorcontrib>Kumar, Pawan</creatorcontrib><creatorcontrib>Trainor, Nicholas</creatorcontrib><creatorcontrib>Aljarb, Areej</creatorcontrib><creatorcontrib>Wan, Yi</creatorcontrib><creatorcontrib>Kim, Hyong Min</creatorcontrib><creatorcontrib>Katti, Keshava</creatorcontrib><creatorcontrib>Song, Seunguk</creatorcontrib><creatorcontrib>Kim, Gwangwoo</creatorcontrib><creatorcontrib>Tang, Zichen</creatorcontrib><creatorcontrib>Fu, Jui-Han</creatorcontrib><creatorcontrib>Hakami, Mariam</creatorcontrib><creatorcontrib>Tung, Vincent</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Olsson, Roy H.</creatorcontrib><creatorcontrib>Jariwala, Deep</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kwan-Ho</au><au>Oh, Seyong</au><au>Fiagbenu, Merrilyn Mercy Adzo</au><au>Zheng, Jeffrey</au><au>Musavigharavi, Pariasadat</au><au>Kumar, Pawan</au><au>Trainor, Nicholas</au><au>Aljarb, Areej</au><au>Wan, Yi</au><au>Kim, Hyong Min</au><au>Katti, Keshava</au><au>Song, Seunguk</au><au>Kim, Gwangwoo</au><au>Tang, Zichen</au><au>Fu, Jui-Han</au><au>Hakami, Mariam</au><au>Tung, Vincent</au><au>Redwing, Joan M.</au><au>Stach, Eric A.</au><au>Olsson, Roy H.</au><au>Jariwala, Deep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>18</volume><issue>9</issue><spage>1044</spage><epage>1050</epage><pages>1044-1050</pages><issn>1748-3387</issn><issn>1748-3395</issn><eissn>1748-3395</eissn><abstract>Three-dimensional monolithic integration of memory devices with logic transistors is a frontier challenge in computer hardware. This integration is essential for augmenting computational power concurrent with enhanced energy efficiency in big data applications such as artificial intelligence. Despite decades of efforts, there remains an urgent need for reliable, compact, fast, energy-efficient and scalable memory devices. Ferroelectric field-effect transistors (FE-FETs) are a promising candidate, but requisite scalability and performance in a back-end-of-line process have proven challenging. Here we present back-end-of-line-compatible FE-FETs using two-dimensional MoS
2
channels and AlScN ferroelectric materials, all grown via wafer-scalable processes. A large array of FE-FETs with memory windows larger than 7.8 V, ON/OFF ratios greater than 10
7
and ON-current density greater than 250 μA um
–1
, all at ~80 nm channel length are demonstrated. The FE-FETs show stable retention up to 10 years by extension, and endurance greater than 10
4
cycles in addition to 4-bit pulse-programmable memory features, thereby opening a path towards the three-dimensional heterointegration of a two-dimensional semiconductor memory with silicon complementary metal–oxide–semiconductor logic.
A large array of ferroelectric field-effect transistors with record memory windows, ON/OFF ratios and ON-current density is presented at ~80 nm channel length.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37217764</pmid><doi>10.1038/s41565-023-01399-y</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3332-9454</orcidid><orcidid>https://orcid.org/0000-0002-7075-9704</orcidid><orcidid>https://orcid.org/0000-0002-7906-452X</orcidid><orcidid>https://orcid.org/0000-0002-8716-4600</orcidid><orcidid>https://orcid.org/0000-0002-3570-8768</orcidid><orcidid>https://orcid.org/0000-0001-5875-708X</orcidid><orcidid>https://orcid.org/0000-0002-3366-2153</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2023-09, Vol.18 (9), p.1044-1050 |
issn | 1748-3387 1748-3395 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_2818053630 |
source | Springer Nature - Complete Springer Journals; Nature |
subjects | 639/166/987 639/301/1005/1008 639/301/357/1018 639/925/357/1018 639/925/927/1007 Arrays Artificial intelligence Chemistry and Materials Science CMOS Current density Energy efficiency Ferroelectric materials Ferroelectricity Field effect transistors Low dimensional semiconductors Materials Science Memory devices Molybdenum disulfide Nanotechnology Nanotechnology and Microengineering Semiconductor devices Transistors |
title | Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A18%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20CMOS%20back-end-of-line-compatible%20AlScN/two-dimensional%20channel%20ferroelectric%20field-effect%20transistors&rft.jtitle=Nature%20nanotechnology&rft.au=Kim,%20Kwan-Ho&rft.date=2023-09-01&rft.volume=18&rft.issue=9&rft.spage=1044&rft.epage=1050&rft.pages=1044-1050&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-023-01399-y&rft_dat=%3Cproquest_cross%3E2864705654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864705654&rft_id=info:pmid/37217764&rfr_iscdi=true |