Finite calculus formulation for incompressible solids using linear triangles and tetrahedra
Many finite elements exhibit the so‐called ‘volumetric locking’ in the analysis of incompressible or quasi‐incompressible problems.In this paper, a new approach is taken to overcome this undesirable effect. The starting point is a new setting of the governing differential equations using a finite ca...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2004-03, Vol.59 (11), p.1473-1500 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1500 |
---|---|
container_issue | 11 |
container_start_page | 1473 |
container_title | International journal for numerical methods in engineering |
container_volume | 59 |
creator | Oñate, Eugenio Rojek, Jerzy Taylor, Robert L. Zienkiewicz, Olgierd C. |
description | Many finite elements exhibit the so‐called ‘volumetric locking’ in the analysis of incompressible or quasi‐incompressible problems.In this paper, a new approach is taken to overcome this undesirable effect. The starting point is a new setting of the governing differential equations using a finite calculus (FIC) formulation. The basis of the FIC method is the satisfaction of the standard equations for balance of momentum (equilibrium of forces) and mass conservation in a domain of finite size and retaining higher order terms in the Taylor expansions used to express the different terms of the differential equations over the balance domain. The modified differential equations contain additional terms which introduce the necessary stability in the equations to overcome the volumetric locking problem. The FIC approach has been successfully used for deriving stabilized finite element and meshless methods for a wide range of advective–diffusive and fluid flow problems. The same ideas are applied in this paper to derive a stabilized formulation for static and dynamic finite element analysis of incompressible solids using linear triangles and tetrahedra. Examples of application of the new stabilized formulation to linear static problems as well as to the semi‐implicit and explicit 2D and 3D non‐linear transient dynamic analysis of an impact problem and a bulk forming process are presented. Copyright © 2004 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.922 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28177887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28177887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3942-b8855ec9127f85a1d41180af81a3bfcd2c8ab6471cd3e265fa3e54331e88b6443</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq4f-BdyUkGqmaTdpEdZdVX8uCgePIRsOtVomq5Ji_rvrVS86WmGeR_m8BKyA-wQGONHocHDkvMVMgFWyoxxJlfJZEjKrCgVrJONlF4YAyiYmJDHMxdch9Qab3vfJ1q3sem96Vwbvnfqgm2bZcSU3MIjTa13VaJ9cuGJehfQRNpFZ8KTx0RNqGiHXTTPWEWzRdZq4xNu_8xNcn92ejc7z65u5xez46vMijLn2UKpokBbApe1KgxUOYBiplZgxKK2FbfKLKa5BFsJ5NOiNgKLXAhApYZ7LjbJ7vh3Gdu3HlOnG5csem8Ctn3SXIGUSskB7v8LgSkOpZCKD3RvpDa2KUWs9TK6xsTPAenvnvXQsx56HuTBKN-dx8-_mL65Ph11NmqXOvz41Sa-6qkUstAPN3N9PXuA8vL8RM_FFzKSjk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082193782</pqid></control><display><type>article</type><title>Finite calculus formulation for incompressible solids using linear triangles and tetrahedra</title><source>Wiley Online Library Journals</source><creator>Oñate, Eugenio ; Rojek, Jerzy ; Taylor, Robert L. ; Zienkiewicz, Olgierd C.</creator><creatorcontrib>Oñate, Eugenio ; Rojek, Jerzy ; Taylor, Robert L. ; Zienkiewicz, Olgierd C.</creatorcontrib><description>Many finite elements exhibit the so‐called ‘volumetric locking’ in the analysis of incompressible or quasi‐incompressible problems.In this paper, a new approach is taken to overcome this undesirable effect. The starting point is a new setting of the governing differential equations using a finite calculus (FIC) formulation. The basis of the FIC method is the satisfaction of the standard equations for balance of momentum (equilibrium of forces) and mass conservation in a domain of finite size and retaining higher order terms in the Taylor expansions used to express the different terms of the differential equations over the balance domain. The modified differential equations contain additional terms which introduce the necessary stability in the equations to overcome the volumetric locking problem. The FIC approach has been successfully used for deriving stabilized finite element and meshless methods for a wide range of advective–diffusive and fluid flow problems. The same ideas are applied in this paper to derive a stabilized formulation for static and dynamic finite element analysis of incompressible solids using linear triangles and tetrahedra. Examples of application of the new stabilized formulation to linear static problems as well as to the semi‐implicit and explicit 2D and 3D non‐linear transient dynamic analysis of an impact problem and a bulk forming process are presented. Copyright © 2004 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.922</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Differential equations ; dynamic analysis ; Dynamic tests ; finite calculus ; Finite element method ; Fluid flow ; linear tetrahedra ; linear triangles ; Locking ; Mathematical analysis ; Mathematical models ; Nonlinear dynamics ; static analysis ; volumetric locking</subject><ispartof>International journal for numerical methods in engineering, 2004-03, Vol.59 (11), p.1473-1500</ispartof><rights>Copyright © 2004 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3942-b8855ec9127f85a1d41180af81a3bfcd2c8ab6471cd3e265fa3e54331e88b6443</citedby><cites>FETCH-LOGICAL-c3942-b8855ec9127f85a1d41180af81a3bfcd2c8ab6471cd3e265fa3e54331e88b6443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.922$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.922$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Oñate, Eugenio</creatorcontrib><creatorcontrib>Rojek, Jerzy</creatorcontrib><creatorcontrib>Taylor, Robert L.</creatorcontrib><creatorcontrib>Zienkiewicz, Olgierd C.</creatorcontrib><title>Finite calculus formulation for incompressible solids using linear triangles and tetrahedra</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>Many finite elements exhibit the so‐called ‘volumetric locking’ in the analysis of incompressible or quasi‐incompressible problems.In this paper, a new approach is taken to overcome this undesirable effect. The starting point is a new setting of the governing differential equations using a finite calculus (FIC) formulation. The basis of the FIC method is the satisfaction of the standard equations for balance of momentum (equilibrium of forces) and mass conservation in a domain of finite size and retaining higher order terms in the Taylor expansions used to express the different terms of the differential equations over the balance domain. The modified differential equations contain additional terms which introduce the necessary stability in the equations to overcome the volumetric locking problem. The FIC approach has been successfully used for deriving stabilized finite element and meshless methods for a wide range of advective–diffusive and fluid flow problems. The same ideas are applied in this paper to derive a stabilized formulation for static and dynamic finite element analysis of incompressible solids using linear triangles and tetrahedra. Examples of application of the new stabilized formulation to linear static problems as well as to the semi‐implicit and explicit 2D and 3D non‐linear transient dynamic analysis of an impact problem and a bulk forming process are presented. Copyright © 2004 John Wiley & Sons, Ltd.</description><subject>Differential equations</subject><subject>dynamic analysis</subject><subject>Dynamic tests</subject><subject>finite calculus</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>linear tetrahedra</subject><subject>linear triangles</subject><subject>Locking</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear dynamics</subject><subject>static analysis</subject><subject>volumetric locking</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq4f-BdyUkGqmaTdpEdZdVX8uCgePIRsOtVomq5Ji_rvrVS86WmGeR_m8BKyA-wQGONHocHDkvMVMgFWyoxxJlfJZEjKrCgVrJONlF4YAyiYmJDHMxdch9Qab3vfJ1q3sem96Vwbvnfqgm2bZcSU3MIjTa13VaJ9cuGJehfQRNpFZ8KTx0RNqGiHXTTPWEWzRdZq4xNu_8xNcn92ejc7z65u5xez46vMijLn2UKpokBbApe1KgxUOYBiplZgxKK2FbfKLKa5BFsJ5NOiNgKLXAhApYZ7LjbJ7vh3Gdu3HlOnG5csem8Ctn3SXIGUSskB7v8LgSkOpZCKD3RvpDa2KUWs9TK6xsTPAenvnvXQsx56HuTBKN-dx8-_mL65Ph11NmqXOvz41Sa-6qkUstAPN3N9PXuA8vL8RM_FFzKSjk8</recordid><startdate>20040321</startdate><enddate>20040321</enddate><creator>Oñate, Eugenio</creator><creator>Rojek, Jerzy</creator><creator>Taylor, Robert L.</creator><creator>Zienkiewicz, Olgierd C.</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SM</scope></search><sort><creationdate>20040321</creationdate><title>Finite calculus formulation for incompressible solids using linear triangles and tetrahedra</title><author>Oñate, Eugenio ; Rojek, Jerzy ; Taylor, Robert L. ; Zienkiewicz, Olgierd C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3942-b8855ec9127f85a1d41180af81a3bfcd2c8ab6471cd3e265fa3e54331e88b6443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Differential equations</topic><topic>dynamic analysis</topic><topic>Dynamic tests</topic><topic>finite calculus</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>linear tetrahedra</topic><topic>linear triangles</topic><topic>Locking</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear dynamics</topic><topic>static analysis</topic><topic>volumetric locking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oñate, Eugenio</creatorcontrib><creatorcontrib>Rojek, Jerzy</creatorcontrib><creatorcontrib>Taylor, Robert L.</creatorcontrib><creatorcontrib>Zienkiewicz, Olgierd C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oñate, Eugenio</au><au>Rojek, Jerzy</au><au>Taylor, Robert L.</au><au>Zienkiewicz, Olgierd C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite calculus formulation for incompressible solids using linear triangles and tetrahedra</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2004-03-21</date><risdate>2004</risdate><volume>59</volume><issue>11</issue><spage>1473</spage><epage>1500</epage><pages>1473-1500</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Many finite elements exhibit the so‐called ‘volumetric locking’ in the analysis of incompressible or quasi‐incompressible problems.In this paper, a new approach is taken to overcome this undesirable effect. The starting point is a new setting of the governing differential equations using a finite calculus (FIC) formulation. The basis of the FIC method is the satisfaction of the standard equations for balance of momentum (equilibrium of forces) and mass conservation in a domain of finite size and retaining higher order terms in the Taylor expansions used to express the different terms of the differential equations over the balance domain. The modified differential equations contain additional terms which introduce the necessary stability in the equations to overcome the volumetric locking problem. The FIC approach has been successfully used for deriving stabilized finite element and meshless methods for a wide range of advective–diffusive and fluid flow problems. The same ideas are applied in this paper to derive a stabilized formulation for static and dynamic finite element analysis of incompressible solids using linear triangles and tetrahedra. Examples of application of the new stabilized formulation to linear static problems as well as to the semi‐implicit and explicit 2D and 3D non‐linear transient dynamic analysis of an impact problem and a bulk forming process are presented. Copyright © 2004 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.922</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2004-03, Vol.59 (11), p.1473-1500 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_28177887 |
source | Wiley Online Library Journals |
subjects | Differential equations dynamic analysis Dynamic tests finite calculus Finite element method Fluid flow linear tetrahedra linear triangles Locking Mathematical analysis Mathematical models Nonlinear dynamics static analysis volumetric locking |
title | Finite calculus formulation for incompressible solids using linear triangles and tetrahedra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20calculus%20formulation%20for%20incompressible%20solids%20using%20linear%20triangles%20and%20tetrahedra&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=O%C3%B1ate,%20Eugenio&rft.date=2004-03-21&rft.volume=59&rft.issue=11&rft.spage=1473&rft.epage=1500&rft.pages=1473-1500&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.922&rft_dat=%3Cproquest_cross%3E28177887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082193782&rft_id=info:pmid/&rfr_iscdi=true |