Understanding how transmembrane domains regulate interactions between human BST-2 and the SARS-CoV-2 accessory protein ORF7a

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID, replicates at intracellular membranes. Bone marrow stromal antigen 2 (BST-2; tetherin) is an antiviral response protein that inhibits transport of viral particles after budding within infected cells. RNA viru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Biomembranes 2023-08, Vol.1865 (6), p.184174-184174, Article 184174
Hauptverfasser: Mann, Madison M., Hsieh, Min-Kang, Tang, James D., Hart, William S., Lazzara, Matthew J., Klauda, Jeffery B., Berger, Bryan W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 184174
container_issue 6
container_start_page 184174
container_title Biochimica et biophysica acta. Biomembranes
container_volume 1865
creator Mann, Madison M.
Hsieh, Min-Kang
Tang, James D.
Hart, William S.
Lazzara, Matthew J.
Klauda, Jeffery B.
Berger, Bryan W.
description Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID, replicates at intracellular membranes. Bone marrow stromal antigen 2 (BST-2; tetherin) is an antiviral response protein that inhibits transport of viral particles after budding within infected cells. RNA viruses such as SARS-CoV-2 use various strategies to disable BST-2, including use of transmembrane ‘accessory’ proteins that interfere with BST-2 oligomerization. ORF7a is a small, transmembrane protein present in SARS-CoV-2 shown previously to alter BST-2 glycosylation and function. In this study, we investigated the structural basis for BST-2 ORF7a interactions, with a particular focus on transmembrane and juxtamembrane interactions. Our results indicate that transmembrane domains play an important role in BST-2 ORF7a interactions and mutations to the transmembrane domain of BST-2 can alter these interactions, particularly single-nucleotide polymorphisms in BST-2 that result in mutations such as I28S. Using molecular dynamics simulations, we identified specific interfaces and interactions between BST-2 and ORF7a to develop a structural basis for the transmembrane interactions. Differences in glycosylation are observed for BST-2 transmembrane mutants interacting with ORF7a, consistent with the idea that transmembrane domains play a key role in their heterooligomerization. Overall, our results indicate that ORF7a transmembrane domain interactions play a key role along with extracellular and juxtamembrane domains in modulating BST-2 function. [Display omitted] •BST-2 cytosolic and transmembrane domains strongly self-associate in the AraTM assay.•SARS-CoV-2 ORF7a and BST-2 chimeras act as competitors to BST-2 self-association in AraTM and DN-AraTM assays.•Multiscale MD modeling of heterodimerization with GMVAE clustering provided a structural model for the dimer interface.•SARS-CoV-2 ORF7a inhibits glycosylation of BST-2 WT and mutants in transfected cells.
doi_str_mv 10.1016/j.bbamem.2023.184174
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2817778547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005273623000561</els_id><sourcerecordid>2817778547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6755e24e674d26705a787990677a182b1af9c88bfb869f3c2e44f56ce9a0eb0a3</originalsourceid><addsrcrecordid>eNp9kE9rFDEYxoModlv9BiI5epk1yWSSzEWoi7VCodBtvYYk8043y05Sk0xLwQ9vlqkePb3w8vzh-SH0gZI1JVR83q-tNRNMa0ZYu6aKU8lfoRVVsm-Y4Ow1WhFCuobJVpyg05z3pNo4696ik1YySltGV-j3XRgg5WLC4MM93sUnXJIJuQbbegEPcTI-ZJzgfj6YAtiHAsm44mP9WihPAAHv5skE_HV72zBco3DZAd6e32ybTfx5fDkHOcf0jB9SLOADvr65kOYdejOaQ4b3L_cM3V18u91cNlfX339szq8ax4kqjZBdB4yDkHxgQpLOyDqyJ0JKQxWz1Iy9U8qOVol-bB0DzsdOOOgNAUtMe4Y-Lbm1_dcMuejJZweHQx0Y56yZolJK1XFZpXyRuhRzTjDqh-Qnk541JfrIXe_1wl0fueuFe7V9fGmY7QTDP9Nf0FXwZRFA3fnoIensPAQHg0_gih6i_3_DH9g_lZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817778547</pqid></control><display><type>article</type><title>Understanding how transmembrane domains regulate interactions between human BST-2 and the SARS-CoV-2 accessory protein ORF7a</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Mann, Madison M. ; Hsieh, Min-Kang ; Tang, James D. ; Hart, William S. ; Lazzara, Matthew J. ; Klauda, Jeffery B. ; Berger, Bryan W.</creator><creatorcontrib>Mann, Madison M. ; Hsieh, Min-Kang ; Tang, James D. ; Hart, William S. ; Lazzara, Matthew J. ; Klauda, Jeffery B. ; Berger, Bryan W.</creatorcontrib><description>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID, replicates at intracellular membranes. Bone marrow stromal antigen 2 (BST-2; tetherin) is an antiviral response protein that inhibits transport of viral particles after budding within infected cells. RNA viruses such as SARS-CoV-2 use various strategies to disable BST-2, including use of transmembrane ‘accessory’ proteins that interfere with BST-2 oligomerization. ORF7a is a small, transmembrane protein present in SARS-CoV-2 shown previously to alter BST-2 glycosylation and function. In this study, we investigated the structural basis for BST-2 ORF7a interactions, with a particular focus on transmembrane and juxtamembrane interactions. Our results indicate that transmembrane domains play an important role in BST-2 ORF7a interactions and mutations to the transmembrane domain of BST-2 can alter these interactions, particularly single-nucleotide polymorphisms in BST-2 that result in mutations such as I28S. Using molecular dynamics simulations, we identified specific interfaces and interactions between BST-2 and ORF7a to develop a structural basis for the transmembrane interactions. Differences in glycosylation are observed for BST-2 transmembrane mutants interacting with ORF7a, consistent with the idea that transmembrane domains play a key role in their heterooligomerization. Overall, our results indicate that ORF7a transmembrane domain interactions play a key role along with extracellular and juxtamembrane domains in modulating BST-2 function. [Display omitted] •BST-2 cytosolic and transmembrane domains strongly self-associate in the AraTM assay.•SARS-CoV-2 ORF7a and BST-2 chimeras act as competitors to BST-2 self-association in AraTM and DN-AraTM assays.•Multiscale MD modeling of heterodimerization with GMVAE clustering provided a structural model for the dimer interface.•SARS-CoV-2 ORF7a inhibits glycosylation of BST-2 WT and mutants in transfected cells.</description><identifier>ISSN: 0005-2736</identifier><identifier>EISSN: 1879-2642</identifier><identifier>DOI: 10.1016/j.bbamem.2023.184174</identifier><identifier>PMID: 37211321</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Cell Membrane - genetics ; Cell Membrane - metabolism ; Cellular immune response ; COVID-19 - metabolism ; Glycosylation ; Humans ; Membrane Proteins - metabolism ; Molecular dynamics ; RNA virus ; SARS-CoV-2 ; SARS-CoV-2 - genetics ; Transmembrane domain ; Viral Regulatory and Accessory Proteins - metabolism</subject><ispartof>Biochimica et biophysica acta. Biomembranes, 2023-08, Vol.1865 (6), p.184174-184174, Article 184174</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6755e24e674d26705a787990677a182b1af9c88bfb869f3c2e44f56ce9a0eb0a3</citedby><cites>FETCH-LOGICAL-c408t-6755e24e674d26705a787990677a182b1af9c88bfb869f3c2e44f56ce9a0eb0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbamem.2023.184174$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37211321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mann, Madison M.</creatorcontrib><creatorcontrib>Hsieh, Min-Kang</creatorcontrib><creatorcontrib>Tang, James D.</creatorcontrib><creatorcontrib>Hart, William S.</creatorcontrib><creatorcontrib>Lazzara, Matthew J.</creatorcontrib><creatorcontrib>Klauda, Jeffery B.</creatorcontrib><creatorcontrib>Berger, Bryan W.</creatorcontrib><title>Understanding how transmembrane domains regulate interactions between human BST-2 and the SARS-CoV-2 accessory protein ORF7a</title><title>Biochimica et biophysica acta. Biomembranes</title><addtitle>Biochim Biophys Acta Biomembr</addtitle><description>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID, replicates at intracellular membranes. Bone marrow stromal antigen 2 (BST-2; tetherin) is an antiviral response protein that inhibits transport of viral particles after budding within infected cells. RNA viruses such as SARS-CoV-2 use various strategies to disable BST-2, including use of transmembrane ‘accessory’ proteins that interfere with BST-2 oligomerization. ORF7a is a small, transmembrane protein present in SARS-CoV-2 shown previously to alter BST-2 glycosylation and function. In this study, we investigated the structural basis for BST-2 ORF7a interactions, with a particular focus on transmembrane and juxtamembrane interactions. Our results indicate that transmembrane domains play an important role in BST-2 ORF7a interactions and mutations to the transmembrane domain of BST-2 can alter these interactions, particularly single-nucleotide polymorphisms in BST-2 that result in mutations such as I28S. Using molecular dynamics simulations, we identified specific interfaces and interactions between BST-2 and ORF7a to develop a structural basis for the transmembrane interactions. Differences in glycosylation are observed for BST-2 transmembrane mutants interacting with ORF7a, consistent with the idea that transmembrane domains play a key role in their heterooligomerization. Overall, our results indicate that ORF7a transmembrane domain interactions play a key role along with extracellular and juxtamembrane domains in modulating BST-2 function. [Display omitted] •BST-2 cytosolic and transmembrane domains strongly self-associate in the AraTM assay.•SARS-CoV-2 ORF7a and BST-2 chimeras act as competitors to BST-2 self-association in AraTM and DN-AraTM assays.•Multiscale MD modeling of heterodimerization with GMVAE clustering provided a structural model for the dimer interface.•SARS-CoV-2 ORF7a inhibits glycosylation of BST-2 WT and mutants in transfected cells.</description><subject>Cell Membrane - genetics</subject><subject>Cell Membrane - metabolism</subject><subject>Cellular immune response</subject><subject>COVID-19 - metabolism</subject><subject>Glycosylation</subject><subject>Humans</subject><subject>Membrane Proteins - metabolism</subject><subject>Molecular dynamics</subject><subject>RNA virus</subject><subject>SARS-CoV-2</subject><subject>SARS-CoV-2 - genetics</subject><subject>Transmembrane domain</subject><subject>Viral Regulatory and Accessory Proteins - metabolism</subject><issn>0005-2736</issn><issn>1879-2642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9rFDEYxoModlv9BiI5epk1yWSSzEWoi7VCodBtvYYk8043y05Sk0xLwQ9vlqkePb3w8vzh-SH0gZI1JVR83q-tNRNMa0ZYu6aKU8lfoRVVsm-Y4Ow1WhFCuobJVpyg05z3pNo4696ik1YySltGV-j3XRgg5WLC4MM93sUnXJIJuQbbegEPcTI-ZJzgfj6YAtiHAsm44mP9WihPAAHv5skE_HV72zBco3DZAd6e32ybTfx5fDkHOcf0jB9SLOADvr65kOYdejOaQ4b3L_cM3V18u91cNlfX339szq8ax4kqjZBdB4yDkHxgQpLOyDqyJ0JKQxWz1Iy9U8qOVol-bB0DzsdOOOgNAUtMe4Y-Lbm1_dcMuejJZweHQx0Y56yZolJK1XFZpXyRuhRzTjDqh-Qnk541JfrIXe_1wl0fueuFe7V9fGmY7QTDP9Nf0FXwZRFA3fnoIensPAQHg0_gih6i_3_DH9g_lZA</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Mann, Madison M.</creator><creator>Hsieh, Min-Kang</creator><creator>Tang, James D.</creator><creator>Hart, William S.</creator><creator>Lazzara, Matthew J.</creator><creator>Klauda, Jeffery B.</creator><creator>Berger, Bryan W.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202308</creationdate><title>Understanding how transmembrane domains regulate interactions between human BST-2 and the SARS-CoV-2 accessory protein ORF7a</title><author>Mann, Madison M. ; Hsieh, Min-Kang ; Tang, James D. ; Hart, William S. ; Lazzara, Matthew J. ; Klauda, Jeffery B. ; Berger, Bryan W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6755e24e674d26705a787990677a182b1af9c88bfb869f3c2e44f56ce9a0eb0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cell Membrane - genetics</topic><topic>Cell Membrane - metabolism</topic><topic>Cellular immune response</topic><topic>COVID-19 - metabolism</topic><topic>Glycosylation</topic><topic>Humans</topic><topic>Membrane Proteins - metabolism</topic><topic>Molecular dynamics</topic><topic>RNA virus</topic><topic>SARS-CoV-2</topic><topic>SARS-CoV-2 - genetics</topic><topic>Transmembrane domain</topic><topic>Viral Regulatory and Accessory Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mann, Madison M.</creatorcontrib><creatorcontrib>Hsieh, Min-Kang</creatorcontrib><creatorcontrib>Tang, James D.</creatorcontrib><creatorcontrib>Hart, William S.</creatorcontrib><creatorcontrib>Lazzara, Matthew J.</creatorcontrib><creatorcontrib>Klauda, Jeffery B.</creatorcontrib><creatorcontrib>Berger, Bryan W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochimica et biophysica acta. Biomembranes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mann, Madison M.</au><au>Hsieh, Min-Kang</au><au>Tang, James D.</au><au>Hart, William S.</au><au>Lazzara, Matthew J.</au><au>Klauda, Jeffery B.</au><au>Berger, Bryan W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding how transmembrane domains regulate interactions between human BST-2 and the SARS-CoV-2 accessory protein ORF7a</atitle><jtitle>Biochimica et biophysica acta. Biomembranes</jtitle><addtitle>Biochim Biophys Acta Biomembr</addtitle><date>2023-08</date><risdate>2023</risdate><volume>1865</volume><issue>6</issue><spage>184174</spage><epage>184174</epage><pages>184174-184174</pages><artnum>184174</artnum><issn>0005-2736</issn><eissn>1879-2642</eissn><abstract>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID, replicates at intracellular membranes. Bone marrow stromal antigen 2 (BST-2; tetherin) is an antiviral response protein that inhibits transport of viral particles after budding within infected cells. RNA viruses such as SARS-CoV-2 use various strategies to disable BST-2, including use of transmembrane ‘accessory’ proteins that interfere with BST-2 oligomerization. ORF7a is a small, transmembrane protein present in SARS-CoV-2 shown previously to alter BST-2 glycosylation and function. In this study, we investigated the structural basis for BST-2 ORF7a interactions, with a particular focus on transmembrane and juxtamembrane interactions. Our results indicate that transmembrane domains play an important role in BST-2 ORF7a interactions and mutations to the transmembrane domain of BST-2 can alter these interactions, particularly single-nucleotide polymorphisms in BST-2 that result in mutations such as I28S. Using molecular dynamics simulations, we identified specific interfaces and interactions between BST-2 and ORF7a to develop a structural basis for the transmembrane interactions. Differences in glycosylation are observed for BST-2 transmembrane mutants interacting with ORF7a, consistent with the idea that transmembrane domains play a key role in their heterooligomerization. Overall, our results indicate that ORF7a transmembrane domain interactions play a key role along with extracellular and juxtamembrane domains in modulating BST-2 function. [Display omitted] •BST-2 cytosolic and transmembrane domains strongly self-associate in the AraTM assay.•SARS-CoV-2 ORF7a and BST-2 chimeras act as competitors to BST-2 self-association in AraTM and DN-AraTM assays.•Multiscale MD modeling of heterodimerization with GMVAE clustering provided a structural model for the dimer interface.•SARS-CoV-2 ORF7a inhibits glycosylation of BST-2 WT and mutants in transfected cells.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37211321</pmid><doi>10.1016/j.bbamem.2023.184174</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-2736
ispartof Biochimica et biophysica acta. Biomembranes, 2023-08, Vol.1865 (6), p.184174-184174, Article 184174
issn 0005-2736
1879-2642
language eng
recordid cdi_proquest_miscellaneous_2817778547
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects Cell Membrane - genetics
Cell Membrane - metabolism
Cellular immune response
COVID-19 - metabolism
Glycosylation
Humans
Membrane Proteins - metabolism
Molecular dynamics
RNA virus
SARS-CoV-2
SARS-CoV-2 - genetics
Transmembrane domain
Viral Regulatory and Accessory Proteins - metabolism
title Understanding how transmembrane domains regulate interactions between human BST-2 and the SARS-CoV-2 accessory protein ORF7a
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A50%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20how%20transmembrane%20domains%20regulate%20interactions%20between%20human%20BST-2%20and%20the%20SARS-CoV-2%20accessory%20protein%20ORF7a&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Biomembranes&rft.au=Mann,%20Madison%20M.&rft.date=2023-08&rft.volume=1865&rft.issue=6&rft.spage=184174&rft.epage=184174&rft.pages=184174-184174&rft.artnum=184174&rft.issn=0005-2736&rft.eissn=1879-2642&rft_id=info:doi/10.1016/j.bbamem.2023.184174&rft_dat=%3Cproquest_cross%3E2817778547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817778547&rft_id=info:pmid/37211321&rft_els_id=S0005273623000561&rfr_iscdi=true