Pd Atomic Engineering of Nanoporous Ni/NiO for Efficient Nitrophenol Hydrogenation Reaction
The catalytic hydrogenation of nitrophenols is widely utilized for both industrial synthesis and environmental protection, thus efficient and cost-effective catalysts are in urgent need. Still, the cost and scarcity of the materials still inhibit their application and the active sites are not well s...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-06, Vol.15 (22), p.26746-26754 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26754 |
---|---|
container_issue | 22 |
container_start_page | 26746 |
container_title | ACS applied materials & interfaces |
container_volume | 15 |
creator | Wei, Fanghui Luo, Min Lan, Jiao Xie, Feng Cai, Lebin Chan, Ting-Shan Peng, Ming Tan, Yongwen |
description | The catalytic hydrogenation of nitrophenols is widely utilized for both industrial synthesis and environmental protection, thus efficient and cost-effective catalysts are in urgent need. Still, the cost and scarcity of the materials still inhibit their application and the active sites are not well specified, especially in the complex catalysts. Herein, we developed an atomic Pd-doped nanoporous Ni/NiO (Pd1@np-Ni/NiO) catalyst via facial dealloying for efficient nitrophenol hydrogenation reaction under mild conditions. Pd1@np-Ni/NiO achieves an excellent specific activity (1301 min–1 mgPd –1, 35.2 times that of commercial Pd/C), nearly 100% selectivity, and continuous reproducibility. The catalytic performance is highly relevant to the Ni sites on the catalysts regarding the exposure sites and the intrinsic property. The metal/metal oxide interfacial structure could cooperatively accelerate the catalytic reaction kinetics. The atomic dopants could effectively modulate the electronic structure, facilitate the absorption of molecules, and reduce the energy barrier of catalytic hydrogenation reaction. Based on the efficient catalyst, the protype nitrophenol//NaBH4 battery is designed for efficient material conversion and power output, which is very attractive for green energy systems. |
doi_str_mv | 10.1021/acsami.3c03491 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2817775826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817775826</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-881045e66f6b6eb2e441ab148923768cc07567318dd59268e1a3e9033c313e5e3</originalsourceid><addsrcrecordid>eNp1kM1PAjEQxRujEUSvHk2PxgTo13a7R0JQTAgYoycPm253FkvYFtvlwH_vkkVunuZl8nsvMw-he0pGlDA61ibq2o64IVxk9AL1aSbEULGEXZ61ED10E-OGEMkZSa5Rj6eMMpmQPvp6K_Gk8bU1eObW1gEE69bYV3ipnd_54PcRL-14aVe48gHPqsoaC65pl03wu29wfovnhzL4NTjdWO_wO2hzFLfoqtLbCHenOUCfz7OP6Xy4WL28TieLoeacNEOlKBEJSFnJQkLBQAiqCypUxngqlTEkTWTKqSrLJGNSAdUcMsK54ZRDAnyAHrvcXfA_e4hNXttoYLvVDtrzc6ZomqaJYrJFRx1qgo8xQJXvgq11OOSU5MdC867Q_FRoa3g4Ze-LGsoz_tdgCzx1QGvMN34fXPvqf2m_hhB_Pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817775826</pqid></control><display><type>article</type><title>Pd Atomic Engineering of Nanoporous Ni/NiO for Efficient Nitrophenol Hydrogenation Reaction</title><source>ACS Publications</source><creator>Wei, Fanghui ; Luo, Min ; Lan, Jiao ; Xie, Feng ; Cai, Lebin ; Chan, Ting-Shan ; Peng, Ming ; Tan, Yongwen</creator><creatorcontrib>Wei, Fanghui ; Luo, Min ; Lan, Jiao ; Xie, Feng ; Cai, Lebin ; Chan, Ting-Shan ; Peng, Ming ; Tan, Yongwen</creatorcontrib><description>The catalytic hydrogenation of nitrophenols is widely utilized for both industrial synthesis and environmental protection, thus efficient and cost-effective catalysts are in urgent need. Still, the cost and scarcity of the materials still inhibit their application and the active sites are not well specified, especially in the complex catalysts. Herein, we developed an atomic Pd-doped nanoporous Ni/NiO (Pd1@np-Ni/NiO) catalyst via facial dealloying for efficient nitrophenol hydrogenation reaction under mild conditions. Pd1@np-Ni/NiO achieves an excellent specific activity (1301 min–1 mgPd –1, 35.2 times that of commercial Pd/C), nearly 100% selectivity, and continuous reproducibility. The catalytic performance is highly relevant to the Ni sites on the catalysts regarding the exposure sites and the intrinsic property. The metal/metal oxide interfacial structure could cooperatively accelerate the catalytic reaction kinetics. The atomic dopants could effectively modulate the electronic structure, facilitate the absorption of molecules, and reduce the energy barrier of catalytic hydrogenation reaction. Based on the efficient catalyst, the protype nitrophenol//NaBH4 battery is designed for efficient material conversion and power output, which is very attractive for green energy systems.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c03491</identifier><identifier>PMID: 37212650</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2023-06, Vol.15 (22), p.26746-26754</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-881045e66f6b6eb2e441ab148923768cc07567318dd59268e1a3e9033c313e5e3</citedby><cites>FETCH-LOGICAL-a330t-881045e66f6b6eb2e441ab148923768cc07567318dd59268e1a3e9033c313e5e3</cites><orcidid>0000-0003-1486-4048 ; 0000-0002-8557-1202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c03491$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c03491$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37212650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Fanghui</creatorcontrib><creatorcontrib>Luo, Min</creatorcontrib><creatorcontrib>Lan, Jiao</creatorcontrib><creatorcontrib>Xie, Feng</creatorcontrib><creatorcontrib>Cai, Lebin</creatorcontrib><creatorcontrib>Chan, Ting-Shan</creatorcontrib><creatorcontrib>Peng, Ming</creatorcontrib><creatorcontrib>Tan, Yongwen</creatorcontrib><title>Pd Atomic Engineering of Nanoporous Ni/NiO for Efficient Nitrophenol Hydrogenation Reaction</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The catalytic hydrogenation of nitrophenols is widely utilized for both industrial synthesis and environmental protection, thus efficient and cost-effective catalysts are in urgent need. Still, the cost and scarcity of the materials still inhibit their application and the active sites are not well specified, especially in the complex catalysts. Herein, we developed an atomic Pd-doped nanoporous Ni/NiO (Pd1@np-Ni/NiO) catalyst via facial dealloying for efficient nitrophenol hydrogenation reaction under mild conditions. Pd1@np-Ni/NiO achieves an excellent specific activity (1301 min–1 mgPd –1, 35.2 times that of commercial Pd/C), nearly 100% selectivity, and continuous reproducibility. The catalytic performance is highly relevant to the Ni sites on the catalysts regarding the exposure sites and the intrinsic property. The metal/metal oxide interfacial structure could cooperatively accelerate the catalytic reaction kinetics. The atomic dopants could effectively modulate the electronic structure, facilitate the absorption of molecules, and reduce the energy barrier of catalytic hydrogenation reaction. Based on the efficient catalyst, the protype nitrophenol//NaBH4 battery is designed for efficient material conversion and power output, which is very attractive for green energy systems.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PAjEQxRujEUSvHk2PxgTo13a7R0JQTAgYoycPm253FkvYFtvlwH_vkkVunuZl8nsvMw-he0pGlDA61ibq2o64IVxk9AL1aSbEULGEXZ61ED10E-OGEMkZSa5Rj6eMMpmQPvp6K_Gk8bU1eObW1gEE69bYV3ipnd_54PcRL-14aVe48gHPqsoaC65pl03wu29wfovnhzL4NTjdWO_wO2hzFLfoqtLbCHenOUCfz7OP6Xy4WL28TieLoeacNEOlKBEJSFnJQkLBQAiqCypUxngqlTEkTWTKqSrLJGNSAdUcMsK54ZRDAnyAHrvcXfA_e4hNXttoYLvVDtrzc6ZomqaJYrJFRx1qgo8xQJXvgq11OOSU5MdC867Q_FRoa3g4Ze-LGsoz_tdgCzx1QGvMN34fXPvqf2m_hhB_Pg</recordid><startdate>20230607</startdate><enddate>20230607</enddate><creator>Wei, Fanghui</creator><creator>Luo, Min</creator><creator>Lan, Jiao</creator><creator>Xie, Feng</creator><creator>Cai, Lebin</creator><creator>Chan, Ting-Shan</creator><creator>Peng, Ming</creator><creator>Tan, Yongwen</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1486-4048</orcidid><orcidid>https://orcid.org/0000-0002-8557-1202</orcidid></search><sort><creationdate>20230607</creationdate><title>Pd Atomic Engineering of Nanoporous Ni/NiO for Efficient Nitrophenol Hydrogenation Reaction</title><author>Wei, Fanghui ; Luo, Min ; Lan, Jiao ; Xie, Feng ; Cai, Lebin ; Chan, Ting-Shan ; Peng, Ming ; Tan, Yongwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-881045e66f6b6eb2e441ab148923768cc07567318dd59268e1a3e9033c313e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Fanghui</creatorcontrib><creatorcontrib>Luo, Min</creatorcontrib><creatorcontrib>Lan, Jiao</creatorcontrib><creatorcontrib>Xie, Feng</creatorcontrib><creatorcontrib>Cai, Lebin</creatorcontrib><creatorcontrib>Chan, Ting-Shan</creatorcontrib><creatorcontrib>Peng, Ming</creatorcontrib><creatorcontrib>Tan, Yongwen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Fanghui</au><au>Luo, Min</au><au>Lan, Jiao</au><au>Xie, Feng</au><au>Cai, Lebin</au><au>Chan, Ting-Shan</au><au>Peng, Ming</au><au>Tan, Yongwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pd Atomic Engineering of Nanoporous Ni/NiO for Efficient Nitrophenol Hydrogenation Reaction</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-06-07</date><risdate>2023</risdate><volume>15</volume><issue>22</issue><spage>26746</spage><epage>26754</epage><pages>26746-26754</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The catalytic hydrogenation of nitrophenols is widely utilized for both industrial synthesis and environmental protection, thus efficient and cost-effective catalysts are in urgent need. Still, the cost and scarcity of the materials still inhibit their application and the active sites are not well specified, especially in the complex catalysts. Herein, we developed an atomic Pd-doped nanoporous Ni/NiO (Pd1@np-Ni/NiO) catalyst via facial dealloying for efficient nitrophenol hydrogenation reaction under mild conditions. Pd1@np-Ni/NiO achieves an excellent specific activity (1301 min–1 mgPd –1, 35.2 times that of commercial Pd/C), nearly 100% selectivity, and continuous reproducibility. The catalytic performance is highly relevant to the Ni sites on the catalysts regarding the exposure sites and the intrinsic property. The metal/metal oxide interfacial structure could cooperatively accelerate the catalytic reaction kinetics. The atomic dopants could effectively modulate the electronic structure, facilitate the absorption of molecules, and reduce the energy barrier of catalytic hydrogenation reaction. Based on the efficient catalyst, the protype nitrophenol//NaBH4 battery is designed for efficient material conversion and power output, which is very attractive for green energy systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37212650</pmid><doi>10.1021/acsami.3c03491</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1486-4048</orcidid><orcidid>https://orcid.org/0000-0002-8557-1202</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2023-06, Vol.15 (22), p.26746-26754 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2817775826 |
source | ACS Publications |
subjects | Energy, Environmental, and Catalysis Applications |
title | Pd Atomic Engineering of Nanoporous Ni/NiO for Efficient Nitrophenol Hydrogenation Reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pd%20Atomic%20Engineering%20of%20Nanoporous%20Ni/NiO%20for%20Efficient%20Nitrophenol%20Hydrogenation%20Reaction&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wei,%20Fanghui&rft.date=2023-06-07&rft.volume=15&rft.issue=22&rft.spage=26746&rft.epage=26754&rft.pages=26746-26754&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c03491&rft_dat=%3Cproquest_cross%3E2817775826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817775826&rft_id=info:pmid/37212650&rfr_iscdi=true |