A 1.8-ns access, 550-MHz, 4.5-Mb CMOS SRAM
An ultrahigh-speed 4.5-Mb CMOS SRAM with 1.8-ns clock-access time, 1.8-ns cycle time, and 9.84-/spl mu/m/sup 2/ memory cells has been developed using 0.25-/spl mu/m CMOS technology. Three key circuit techniques for achieving this high speed are a decoder using source-coupled-logic (SCL) circuits com...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 1998-11, Vol.33 (11), p.1650-1658 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1658 |
---|---|
container_issue | 11 |
container_start_page | 1650 |
container_title | IEEE journal of solid-state circuits |
container_volume | 33 |
creator | Nambu, H. Kanetani, K. Yamasaki, K. Higeta, K. Usami, M. Fujimura, Y. Ando, K. Kusunoki, T. Yamaguchi, K. Homma, N. |
description | An ultrahigh-speed 4.5-Mb CMOS SRAM with 1.8-ns clock-access time, 1.8-ns cycle time, and 9.84-/spl mu/m/sup 2/ memory cells has been developed using 0.25-/spl mu/m CMOS technology. Three key circuit techniques for achieving this high speed are a decoder using source-coupled-logic (SCL) circuits combined with reset circuits, a sense amplifier with nMOS source followers, and a sense-amplifier activation-pulse generator that uses a duplicate memory-cell array. The proposed decoder can reduce the delay time between the address input and the word-line signal of the 4.5-Mb SRAM to 68% of that of an SRAM with conventional circuits. The sense amplifier with nMOS source followers can reduce not only the delay time of the sense amplifier but also the power dissipation. In the SRAM, the sense-amplifier activation pulse must be input into the sense amplifier after the signal from the memory cell is input into the sense amplifier. A large timing margin required between these signals results in a large access time in the conventional SRAM. The sense-amplifier activation pulse generator that uses a duplicate memory-cell array can reduce the required timing margin to less than half of the conventional margin. These three techniques are especially useful for realizing ultrahigh-speed SRAM's, which will be used as on-chip or off-chip cache memories in processor systems. |
doi_str_mv | 10.1109/4.726553 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28170184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>726553</ieee_id><sourcerecordid>27440361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-375fe01c0b8b0cd871b2710efca7178b00a13d9607fd1ef6921f05295bfb44983</originalsourceid><addsrcrecordid>eNqF0FFLwzAQB_AgCtYp-OxTnkRkqXdN0qSPo6gTVgZOwbfQpglUunU228P89FY6fPXpuLsfB_cn5BohRoTsQcQqSaXkJyRCKTVDxT9OSQSAmmUJwDm5COFzaIXQGJH7GcVYs02gpbUuhCmVElgx_55SEUtWVDQvliu6ep0Vl-TMl21wV8c6Ie9Pj2_5nC2Wzy_5bMEsh3THuJLeAVqodAW21gqrRCE4b0uFaphBibzOUlC-RufTLEEPMslk5SshMs0n5Ha8u-27r70LO7NugnVtW25ctw8m0aiGb8T_UAkBPMUB3o3Q9l0IvfNm2zfrsj8YBPObmhFmTG2gNyNtnHN_7Lj8AedjYIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27440361</pqid></control><display><type>article</type><title>A 1.8-ns access, 550-MHz, 4.5-Mb CMOS SRAM</title><source>IEEE Electronic Library (IEL)</source><creator>Nambu, H. ; Kanetani, K. ; Yamasaki, K. ; Higeta, K. ; Usami, M. ; Fujimura, Y. ; Ando, K. ; Kusunoki, T. ; Yamaguchi, K. ; Homma, N.</creator><creatorcontrib>Nambu, H. ; Kanetani, K. ; Yamasaki, K. ; Higeta, K. ; Usami, M. ; Fujimura, Y. ; Ando, K. ; Kusunoki, T. ; Yamaguchi, K. ; Homma, N.</creatorcontrib><description>An ultrahigh-speed 4.5-Mb CMOS SRAM with 1.8-ns clock-access time, 1.8-ns cycle time, and 9.84-/spl mu/m/sup 2/ memory cells has been developed using 0.25-/spl mu/m CMOS technology. Three key circuit techniques for achieving this high speed are a decoder using source-coupled-logic (SCL) circuits combined with reset circuits, a sense amplifier with nMOS source followers, and a sense-amplifier activation-pulse generator that uses a duplicate memory-cell array. The proposed decoder can reduce the delay time between the address input and the word-line signal of the 4.5-Mb SRAM to 68% of that of an SRAM with conventional circuits. The sense amplifier with nMOS source followers can reduce not only the delay time of the sense amplifier but also the power dissipation. In the SRAM, the sense-amplifier activation pulse must be input into the sense amplifier after the signal from the memory cell is input into the sense amplifier. A large timing margin required between these signals results in a large access time in the conventional SRAM. The sense-amplifier activation pulse generator that uses a duplicate memory-cell array can reduce the required timing margin to less than half of the conventional margin. These three techniques are especially useful for realizing ultrahigh-speed SRAM's, which will be used as on-chip or off-chip cache memories in processor systems.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/4.726553</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuits ; Clocks ; CMOS technology ; Decoding ; Delay effects ; MOS devices ; Power amplifiers ; Pulse amplifiers ; Random access memory ; Timing</subject><ispartof>IEEE journal of solid-state circuits, 1998-11, Vol.33 (11), p.1650-1658</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-375fe01c0b8b0cd871b2710efca7178b00a13d9607fd1ef6921f05295bfb44983</citedby><cites>FETCH-LOGICAL-c306t-375fe01c0b8b0cd871b2710efca7178b00a13d9607fd1ef6921f05295bfb44983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/726553$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/726553$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nambu, H.</creatorcontrib><creatorcontrib>Kanetani, K.</creatorcontrib><creatorcontrib>Yamasaki, K.</creatorcontrib><creatorcontrib>Higeta, K.</creatorcontrib><creatorcontrib>Usami, M.</creatorcontrib><creatorcontrib>Fujimura, Y.</creatorcontrib><creatorcontrib>Ando, K.</creatorcontrib><creatorcontrib>Kusunoki, T.</creatorcontrib><creatorcontrib>Yamaguchi, K.</creatorcontrib><creatorcontrib>Homma, N.</creatorcontrib><title>A 1.8-ns access, 550-MHz, 4.5-Mb CMOS SRAM</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>An ultrahigh-speed 4.5-Mb CMOS SRAM with 1.8-ns clock-access time, 1.8-ns cycle time, and 9.84-/spl mu/m/sup 2/ memory cells has been developed using 0.25-/spl mu/m CMOS technology. Three key circuit techniques for achieving this high speed are a decoder using source-coupled-logic (SCL) circuits combined with reset circuits, a sense amplifier with nMOS source followers, and a sense-amplifier activation-pulse generator that uses a duplicate memory-cell array. The proposed decoder can reduce the delay time between the address input and the word-line signal of the 4.5-Mb SRAM to 68% of that of an SRAM with conventional circuits. The sense amplifier with nMOS source followers can reduce not only the delay time of the sense amplifier but also the power dissipation. In the SRAM, the sense-amplifier activation pulse must be input into the sense amplifier after the signal from the memory cell is input into the sense amplifier. A large timing margin required between these signals results in a large access time in the conventional SRAM. The sense-amplifier activation pulse generator that uses a duplicate memory-cell array can reduce the required timing margin to less than half of the conventional margin. These three techniques are especially useful for realizing ultrahigh-speed SRAM's, which will be used as on-chip or off-chip cache memories in processor systems.</description><subject>Circuits</subject><subject>Clocks</subject><subject>CMOS technology</subject><subject>Decoding</subject><subject>Delay effects</subject><subject>MOS devices</subject><subject>Power amplifiers</subject><subject>Pulse amplifiers</subject><subject>Random access memory</subject><subject>Timing</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0FFLwzAQB_AgCtYp-OxTnkRkqXdN0qSPo6gTVgZOwbfQpglUunU228P89FY6fPXpuLsfB_cn5BohRoTsQcQqSaXkJyRCKTVDxT9OSQSAmmUJwDm5COFzaIXQGJH7GcVYs02gpbUuhCmVElgx_55SEUtWVDQvliu6ep0Vl-TMl21wV8c6Ie9Pj2_5nC2Wzy_5bMEsh3THuJLeAVqodAW21gqrRCE4b0uFaphBibzOUlC-RufTLEEPMslk5SshMs0n5Ha8u-27r70LO7NugnVtW25ctw8m0aiGb8T_UAkBPMUB3o3Q9l0IvfNm2zfrsj8YBPObmhFmTG2gNyNtnHN_7Lj8AedjYIk</recordid><startdate>199811</startdate><enddate>199811</enddate><creator>Nambu, H.</creator><creator>Kanetani, K.</creator><creator>Yamasaki, K.</creator><creator>Higeta, K.</creator><creator>Usami, M.</creator><creator>Fujimura, Y.</creator><creator>Ando, K.</creator><creator>Kusunoki, T.</creator><creator>Yamaguchi, K.</creator><creator>Homma, N.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7SP</scope></search><sort><creationdate>199811</creationdate><title>A 1.8-ns access, 550-MHz, 4.5-Mb CMOS SRAM</title><author>Nambu, H. ; Kanetani, K. ; Yamasaki, K. ; Higeta, K. ; Usami, M. ; Fujimura, Y. ; Ando, K. ; Kusunoki, T. ; Yamaguchi, K. ; Homma, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-375fe01c0b8b0cd871b2710efca7178b00a13d9607fd1ef6921f05295bfb44983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Circuits</topic><topic>Clocks</topic><topic>CMOS technology</topic><topic>Decoding</topic><topic>Delay effects</topic><topic>MOS devices</topic><topic>Power amplifiers</topic><topic>Pulse amplifiers</topic><topic>Random access memory</topic><topic>Timing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nambu, H.</creatorcontrib><creatorcontrib>Kanetani, K.</creatorcontrib><creatorcontrib>Yamasaki, K.</creatorcontrib><creatorcontrib>Higeta, K.</creatorcontrib><creatorcontrib>Usami, M.</creatorcontrib><creatorcontrib>Fujimura, Y.</creatorcontrib><creatorcontrib>Ando, K.</creatorcontrib><creatorcontrib>Kusunoki, T.</creatorcontrib><creatorcontrib>Yamaguchi, K.</creatorcontrib><creatorcontrib>Homma, N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nambu, H.</au><au>Kanetani, K.</au><au>Yamasaki, K.</au><au>Higeta, K.</au><au>Usami, M.</au><au>Fujimura, Y.</au><au>Ando, K.</au><au>Kusunoki, T.</au><au>Yamaguchi, K.</au><au>Homma, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 1.8-ns access, 550-MHz, 4.5-Mb CMOS SRAM</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>1998-11</date><risdate>1998</risdate><volume>33</volume><issue>11</issue><spage>1650</spage><epage>1658</epage><pages>1650-1658</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>An ultrahigh-speed 4.5-Mb CMOS SRAM with 1.8-ns clock-access time, 1.8-ns cycle time, and 9.84-/spl mu/m/sup 2/ memory cells has been developed using 0.25-/spl mu/m CMOS technology. Three key circuit techniques for achieving this high speed are a decoder using source-coupled-logic (SCL) circuits combined with reset circuits, a sense amplifier with nMOS source followers, and a sense-amplifier activation-pulse generator that uses a duplicate memory-cell array. The proposed decoder can reduce the delay time between the address input and the word-line signal of the 4.5-Mb SRAM to 68% of that of an SRAM with conventional circuits. The sense amplifier with nMOS source followers can reduce not only the delay time of the sense amplifier but also the power dissipation. In the SRAM, the sense-amplifier activation pulse must be input into the sense amplifier after the signal from the memory cell is input into the sense amplifier. A large timing margin required between these signals results in a large access time in the conventional SRAM. The sense-amplifier activation pulse generator that uses a duplicate memory-cell array can reduce the required timing margin to less than half of the conventional margin. These three techniques are especially useful for realizing ultrahigh-speed SRAM's, which will be used as on-chip or off-chip cache memories in processor systems.</abstract><pub>IEEE</pub><doi>10.1109/4.726553</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 1998-11, Vol.33 (11), p.1650-1658 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_proquest_miscellaneous_28170184 |
source | IEEE Electronic Library (IEL) |
subjects | Circuits Clocks CMOS technology Decoding Delay effects MOS devices Power amplifiers Pulse amplifiers Random access memory Timing |
title | A 1.8-ns access, 550-MHz, 4.5-Mb CMOS SRAM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A52%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%201.8-ns%20access,%20550-MHz,%204.5-Mb%20CMOS%20SRAM&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Nambu,%20H.&rft.date=1998-11&rft.volume=33&rft.issue=11&rft.spage=1650&rft.epage=1658&rft.pages=1650-1658&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/4.726553&rft_dat=%3Cproquest_RIE%3E27440361%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27440361&rft_id=info:pmid/&rft_ieee_id=726553&rfr_iscdi=true |