Event-triggered fault-tolerant control for input-constrained nonlinear systems with mismatched disturbances via adaptive dynamic programming

In this paper, the issue of event-triggered optimal fault-tolerant control is investigated for input-constrained nonlinear systems with mismatched disturbances. To eliminate the effect of abrupt faults and ensure the optimal performance of general nonlinear dynamics, an adaptive dynamic programming...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2023-07, Vol.164, p.508-520
Hauptverfasser: Zhao, Heng, Wang, Huanqing, Niu, Ben, Zhao, Xudong, Alharbi, Khalid H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 520
container_issue
container_start_page 508
container_title Neural networks
container_volume 164
creator Zhao, Heng
Wang, Huanqing
Niu, Ben
Zhao, Xudong
Alharbi, Khalid H.
description In this paper, the issue of event-triggered optimal fault-tolerant control is investigated for input-constrained nonlinear systems with mismatched disturbances. To eliminate the effect of abrupt faults and ensure the optimal performance of general nonlinear dynamics, an adaptive dynamic programming (ADP) algorithm is employed to develop a sliding mode fault-tolerant control strategy. When the system trajectories converge to the sliding-mode surface, the equivalent sliding mode dynamics is transformed into a reformulated auxiliary system with a modified cost function. Then, a single critic neural network (NN) is adopted to solve the modified Hamilton–Jacobi–Bellman (HJB) equation. In order to overcome the difficulty that arises from the persistence of excitation (PE) condition, the experience replay technique is utilized to update the critic weights. In this study, a novel control method is proposed, which can effectively eliminate the effects of abrupt faults while achieving optimal control with the minimum cost under a single network architecture. Furthermore, the closed-loop nonlinear system is proved to be uniformly ultimate boundedness based on Lyapunov stability theory. Finally, three examples are presented to verify the validity of the control strategy.
doi_str_mv 10.1016/j.neunet.2023.05.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2816763556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608023002320</els_id><sourcerecordid>2816763556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-5d7a9610504e96d2f006f3d8e6e5b15e63a45ee7eda4e5901e6bfe3eedf37213</originalsourceid><addsrcrecordid>eNp9kcFO3DAQhq2KqmyBN6gqH7kkHcexk1yQEAJaCakX7pbXnixeJfZiO4v2HfrQGC30yMlj65v5_c9PyA8GNQMmf21rj4vHXDfQ8BpEDcC-kBXru6Fqur45ISvoB15J6OGUfE9pCwCyb_k3csq7BhhnbEX-3e7R5ypHt9lgREtHvUzlHiaM2mdqgs8xTHQMkTq_W3JVXlKO2vkC--CnUuhI0yFlnBN9cfmJzi7NOpunQliX8hLX2htMdO801VbvstsjtQevZ2foLoZN1PPs_OacfB31lPDi_Twjj3e3jze_q4e_939urh8qw2WTK2E7PUgGAlocpG3G4mvktkeJYs0ESq5bgdih1S2KARjK9Ygc0Y7FOONn5PI4tkg_L5iyKh82OE3aY1iSanomO8mFkAVtj6iJIaWIo9pFN-t4UAzUWwxqq44xqLcYFAhVYihtP98VlvWM9n_Tx94LcHUEsNjcO4wqGYdlSdZFNFnZ4D5XeAXgJ6AO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2816763556</pqid></control><display><type>article</type><title>Event-triggered fault-tolerant control for input-constrained nonlinear systems with mismatched disturbances via adaptive dynamic programming</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Zhao, Heng ; Wang, Huanqing ; Niu, Ben ; Zhao, Xudong ; Alharbi, Khalid H.</creator><creatorcontrib>Zhao, Heng ; Wang, Huanqing ; Niu, Ben ; Zhao, Xudong ; Alharbi, Khalid H.</creatorcontrib><description>In this paper, the issue of event-triggered optimal fault-tolerant control is investigated for input-constrained nonlinear systems with mismatched disturbances. To eliminate the effect of abrupt faults and ensure the optimal performance of general nonlinear dynamics, an adaptive dynamic programming (ADP) algorithm is employed to develop a sliding mode fault-tolerant control strategy. When the system trajectories converge to the sliding-mode surface, the equivalent sliding mode dynamics is transformed into a reformulated auxiliary system with a modified cost function. Then, a single critic neural network (NN) is adopted to solve the modified Hamilton–Jacobi–Bellman (HJB) equation. In order to overcome the difficulty that arises from the persistence of excitation (PE) condition, the experience replay technique is utilized to update the critic weights. In this study, a novel control method is proposed, which can effectively eliminate the effects of abrupt faults while achieving optimal control with the minimum cost under a single network architecture. Furthermore, the closed-loop nonlinear system is proved to be uniformly ultimate boundedness based on Lyapunov stability theory. Finally, three examples are presented to verify the validity of the control strategy.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2023.05.001</identifier><identifier>PMID: 37201311</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adaptive dynamic programming (ADP) ; Algorithms ; Constrained nonlinear systems ; Event-triggered control ; Fault-tolerant control ; Neural Networks, Computer ; Nonlinear Dynamics ; Sliding-mode control</subject><ispartof>Neural networks, 2023-07, Vol.164, p.508-520</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-5d7a9610504e96d2f006f3d8e6e5b15e63a45ee7eda4e5901e6bfe3eedf37213</citedby><cites>FETCH-LOGICAL-c362t-5d7a9610504e96d2f006f3d8e6e5b15e63a45ee7eda4e5901e6bfe3eedf37213</cites><orcidid>0000-0002-9159-2552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2023.05.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37201311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Heng</creatorcontrib><creatorcontrib>Wang, Huanqing</creatorcontrib><creatorcontrib>Niu, Ben</creatorcontrib><creatorcontrib>Zhao, Xudong</creatorcontrib><creatorcontrib>Alharbi, Khalid H.</creatorcontrib><title>Event-triggered fault-tolerant control for input-constrained nonlinear systems with mismatched disturbances via adaptive dynamic programming</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>In this paper, the issue of event-triggered optimal fault-tolerant control is investigated for input-constrained nonlinear systems with mismatched disturbances. To eliminate the effect of abrupt faults and ensure the optimal performance of general nonlinear dynamics, an adaptive dynamic programming (ADP) algorithm is employed to develop a sliding mode fault-tolerant control strategy. When the system trajectories converge to the sliding-mode surface, the equivalent sliding mode dynamics is transformed into a reformulated auxiliary system with a modified cost function. Then, a single critic neural network (NN) is adopted to solve the modified Hamilton–Jacobi–Bellman (HJB) equation. In order to overcome the difficulty that arises from the persistence of excitation (PE) condition, the experience replay technique is utilized to update the critic weights. In this study, a novel control method is proposed, which can effectively eliminate the effects of abrupt faults while achieving optimal control with the minimum cost under a single network architecture. Furthermore, the closed-loop nonlinear system is proved to be uniformly ultimate boundedness based on Lyapunov stability theory. Finally, three examples are presented to verify the validity of the control strategy.</description><subject>Adaptive dynamic programming (ADP)</subject><subject>Algorithms</subject><subject>Constrained nonlinear systems</subject><subject>Event-triggered control</subject><subject>Fault-tolerant control</subject><subject>Neural Networks, Computer</subject><subject>Nonlinear Dynamics</subject><subject>Sliding-mode control</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFO3DAQhq2KqmyBN6gqH7kkHcexk1yQEAJaCakX7pbXnixeJfZiO4v2HfrQGC30yMlj65v5_c9PyA8GNQMmf21rj4vHXDfQ8BpEDcC-kBXru6Fqur45ISvoB15J6OGUfE9pCwCyb_k3csq7BhhnbEX-3e7R5ypHt9lgREtHvUzlHiaM2mdqgs8xTHQMkTq_W3JVXlKO2vkC--CnUuhI0yFlnBN9cfmJzi7NOpunQliX8hLX2htMdO801VbvstsjtQevZ2foLoZN1PPs_OacfB31lPDi_Twjj3e3jze_q4e_939urh8qw2WTK2E7PUgGAlocpG3G4mvktkeJYs0ESq5bgdih1S2KARjK9Ygc0Y7FOONn5PI4tkg_L5iyKh82OE3aY1iSanomO8mFkAVtj6iJIaWIo9pFN-t4UAzUWwxqq44xqLcYFAhVYihtP98VlvWM9n_Tx94LcHUEsNjcO4wqGYdlSdZFNFnZ4D5XeAXgJ6AO</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Zhao, Heng</creator><creator>Wang, Huanqing</creator><creator>Niu, Ben</creator><creator>Zhao, Xudong</creator><creator>Alharbi, Khalid H.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9159-2552</orcidid></search><sort><creationdate>202307</creationdate><title>Event-triggered fault-tolerant control for input-constrained nonlinear systems with mismatched disturbances via adaptive dynamic programming</title><author>Zhao, Heng ; Wang, Huanqing ; Niu, Ben ; Zhao, Xudong ; Alharbi, Khalid H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-5d7a9610504e96d2f006f3d8e6e5b15e63a45ee7eda4e5901e6bfe3eedf37213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive dynamic programming (ADP)</topic><topic>Algorithms</topic><topic>Constrained nonlinear systems</topic><topic>Event-triggered control</topic><topic>Fault-tolerant control</topic><topic>Neural Networks, Computer</topic><topic>Nonlinear Dynamics</topic><topic>Sliding-mode control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Heng</creatorcontrib><creatorcontrib>Wang, Huanqing</creatorcontrib><creatorcontrib>Niu, Ben</creatorcontrib><creatorcontrib>Zhao, Xudong</creatorcontrib><creatorcontrib>Alharbi, Khalid H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Heng</au><au>Wang, Huanqing</au><au>Niu, Ben</au><au>Zhao, Xudong</au><au>Alharbi, Khalid H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Event-triggered fault-tolerant control for input-constrained nonlinear systems with mismatched disturbances via adaptive dynamic programming</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2023-07</date><risdate>2023</risdate><volume>164</volume><spage>508</spage><epage>520</epage><pages>508-520</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>In this paper, the issue of event-triggered optimal fault-tolerant control is investigated for input-constrained nonlinear systems with mismatched disturbances. To eliminate the effect of abrupt faults and ensure the optimal performance of general nonlinear dynamics, an adaptive dynamic programming (ADP) algorithm is employed to develop a sliding mode fault-tolerant control strategy. When the system trajectories converge to the sliding-mode surface, the equivalent sliding mode dynamics is transformed into a reformulated auxiliary system with a modified cost function. Then, a single critic neural network (NN) is adopted to solve the modified Hamilton–Jacobi–Bellman (HJB) equation. In order to overcome the difficulty that arises from the persistence of excitation (PE) condition, the experience replay technique is utilized to update the critic weights. In this study, a novel control method is proposed, which can effectively eliminate the effects of abrupt faults while achieving optimal control with the minimum cost under a single network architecture. Furthermore, the closed-loop nonlinear system is proved to be uniformly ultimate boundedness based on Lyapunov stability theory. Finally, three examples are presented to verify the validity of the control strategy.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>37201311</pmid><doi>10.1016/j.neunet.2023.05.001</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9159-2552</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2023-07, Vol.164, p.508-520
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_2816763556
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Adaptive dynamic programming (ADP)
Algorithms
Constrained nonlinear systems
Event-triggered control
Fault-tolerant control
Neural Networks, Computer
Nonlinear Dynamics
Sliding-mode control
title Event-triggered fault-tolerant control for input-constrained nonlinear systems with mismatched disturbances via adaptive dynamic programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Event-triggered%20fault-tolerant%20control%20for%20input-constrained%20nonlinear%20systems%20with%20mismatched%20disturbances%20via%20adaptive%20dynamic%20programming&rft.jtitle=Neural%20networks&rft.au=Zhao,%20Heng&rft.date=2023-07&rft.volume=164&rft.spage=508&rft.epage=520&rft.pages=508-520&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2023.05.001&rft_dat=%3Cproquest_cross%3E2816763556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2816763556&rft_id=info:pmid/37201311&rft_els_id=S0893608023002320&rfr_iscdi=true